1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003 |
- // boost\math\distributions\non_central_chi_squared.hpp
- // Copyright John Maddock 2008.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
- #define BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
- #include <boost/math/distributions/fwd.hpp>
- #include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q
- #include <boost/math/special_functions/bessel.hpp> // for cyl_bessel_i
- #include <boost/math/special_functions/round.hpp> // for llround
- #include <boost/math/distributions/complement.hpp> // complements
- #include <boost/math/distributions/chi_squared.hpp> // central distribution
- #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
- #include <boost/math/special_functions/fpclassify.hpp> // isnan.
- #include <boost/math/tools/roots.hpp> // for root finding.
- #include <boost/math/distributions/detail/generic_mode.hpp>
- #include <boost/math/distributions/detail/generic_quantile.hpp>
- namespace boost
- {
- namespace math
- {
- template <class RealType, class Policy>
- class non_central_chi_squared_distribution;
- namespace detail{
- template <class T, class Policy>
- T non_central_chi_square_q(T x, T f, T theta, const Policy& pol, T init_sum = 0)
- {
- //
- // Computes the complement of the Non-Central Chi-Square
- // Distribution CDF by summing a weighted sum of complements
- // of the central-distributions. The weighting factor is
- // a Poisson Distribution.
- //
- // This is an application of the technique described in:
- //
- // Computing discrete mixtures of continuous
- // distributions: noncentral chisquare, noncentral t
- // and the distribution of the square of the sample
- // multiple correlation coefficient.
- // D. Benton, K. Krishnamoorthy.
- // Computational Statistics & Data Analysis 43 (2003) 249 - 267
- //
- BOOST_MATH_STD_USING
- // Special case:
- if(x == 0)
- return 1;
- //
- // Initialize the variables we'll be using:
- //
- T lambda = theta / 2;
- T del = f / 2;
- T y = x / 2;
- std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- T errtol = boost::math::policies::get_epsilon<T, Policy>();
- T sum = init_sum;
- //
- // k is the starting location for iteration, we'll
- // move both forwards and backwards from this point.
- // k is chosen as the peek of the Poisson weights, which
- // will occur *before* the largest term.
- //
- long long k = llround(lambda, pol);
- // Forwards and backwards Poisson weights:
- T poisf = boost::math::gamma_p_derivative(static_cast<T>(1 + k), lambda, pol);
- T poisb = poisf * k / lambda;
- // Initial forwards central chi squared term:
- T gamf = boost::math::gamma_q(del + k, y, pol);
- // Forwards and backwards recursion terms on the central chi squared:
- T xtermf = boost::math::gamma_p_derivative(del + 1 + k, y, pol);
- T xtermb = xtermf * (del + k) / y;
- // Initial backwards central chi squared term:
- T gamb = gamf - xtermb;
- //
- // Forwards iteration first, this is the
- // stable direction for the gamma function
- // recurrences:
- //
- long long i;
- for(i = k; static_cast<std::uintmax_t>(i-k) < max_iter; ++i)
- {
- T term = poisf * gamf;
- sum += term;
- poisf *= lambda / (i + 1);
- gamf += xtermf;
- xtermf *= y / (del + i + 1);
- if(((sum == 0) || (fabs(term / sum) < errtol)) && (term >= poisf * gamf))
- break;
- }
- //Error check:
- if(static_cast<std::uintmax_t>(i-k) >= max_iter)
- return policies::raise_evaluation_error(
- "cdf(non_central_chi_squared_distribution<%1%>, %1%)",
- "Series did not converge, closest value was %1%", sum, pol);
- //
- // Now backwards iteration: the gamma
- // function recurrences are unstable in this
- // direction, we rely on the terms diminishing in size
- // faster than we introduce cancellation errors.
- // For this reason it's very important that we start
- // *before* the largest term so that backwards iteration
- // is strictly converging.
- //
- for(i = k - 1; i >= 0; --i)
- {
- T term = poisb * gamb;
- sum += term;
- poisb *= i / lambda;
- xtermb *= (del + i) / y;
- gamb -= xtermb;
- if((sum == 0) || (fabs(term / sum) < errtol))
- break;
- }
- return sum;
- }
- template <class T, class Policy>
- T non_central_chi_square_p_ding(T x, T f, T theta, const Policy& pol, T init_sum = 0)
- {
- //
- // This is an implementation of:
- //
- // Algorithm AS 275:
- // Computing the Non-Central #2 Distribution Function
- // Cherng G. Ding
- // Applied Statistics, Vol. 41, No. 2. (1992), pp. 478-482.
- //
- // This uses a stable forward iteration to sum the
- // CDF, unfortunately this can not be used for large
- // values of the non-centrality parameter because:
- // * The first term may underflow to zero.
- // * We may need an extra-ordinary number of terms
- // before we reach the first *significant* term.
- //
- BOOST_MATH_STD_USING
- // Special case:
- if(x == 0)
- return 0;
- T tk = boost::math::gamma_p_derivative(f/2 + 1, x/2, pol);
- T lambda = theta / 2;
- T vk = exp(-lambda);
- T uk = vk;
- T sum = init_sum + tk * vk;
- if(sum == 0)
- return sum;
- std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- T errtol = boost::math::policies::get_epsilon<T, Policy>();
- int i;
- T lterm(0), term(0);
- for(i = 1; static_cast<std::uintmax_t>(i) < max_iter; ++i)
- {
- tk = tk * x / (f + 2 * i);
- uk = uk * lambda / i;
- vk = vk + uk;
- lterm = term;
- term = vk * tk;
- sum += term;
- if((fabs(term / sum) < errtol) && (term <= lterm))
- break;
- }
- //Error check:
- if(static_cast<std::uintmax_t>(i) >= max_iter)
- return policies::raise_evaluation_error(
- "cdf(non_central_chi_squared_distribution<%1%>, %1%)",
- "Series did not converge, closest value was %1%", sum, pol);
- return sum;
- }
- template <class T, class Policy>
- T non_central_chi_square_p(T y, T n, T lambda, const Policy& pol, T init_sum)
- {
- //
- // This is taken more or less directly from:
- //
- // Computing discrete mixtures of continuous
- // distributions: noncentral chisquare, noncentral t
- // and the distribution of the square of the sample
- // multiple correlation coefficient.
- // D. Benton, K. Krishnamoorthy.
- // Computational Statistics & Data Analysis 43 (2003) 249 - 267
- //
- // We're summing a Poisson weighting term multiplied by
- // a central chi squared distribution.
- //
- BOOST_MATH_STD_USING
- // Special case:
- if(y == 0)
- return 0;
- std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- T errtol = boost::math::policies::get_epsilon<T, Policy>();
- T errorf(0), errorb(0);
- T x = y / 2;
- T del = lambda / 2;
- //
- // Starting location for the iteration, we'll iterate
- // both forwards and backwards from this point. The
- // location chosen is the maximum of the Poisson weight
- // function, which ocurrs *after* the largest term in the
- // sum.
- //
- long long k = llround(del, pol);
- T a = n / 2 + k;
- // Central chi squared term for forward iteration:
- T gamkf = boost::math::gamma_p(a, x, pol);
- if(lambda == 0)
- return gamkf;
- // Central chi squared term for backward iteration:
- T gamkb = gamkf;
- // Forwards Poisson weight:
- T poiskf = gamma_p_derivative(static_cast<T>(k+1), del, pol);
- // Backwards Poisson weight:
- T poiskb = poiskf;
- // Forwards gamma function recursion term:
- T xtermf = boost::math::gamma_p_derivative(a, x, pol);
- // Backwards gamma function recursion term:
- T xtermb = xtermf * x / a;
- T sum = init_sum + poiskf * gamkf;
- if(sum == 0)
- return sum;
- int i = 1;
- //
- // Backwards recursion first, this is the stable
- // direction for gamma function recurrences:
- //
- while(i <= k)
- {
- xtermb *= (a - i + 1) / x;
- gamkb += xtermb;
- poiskb = poiskb * (k - i + 1) / del;
- errorf = errorb;
- errorb = gamkb * poiskb;
- sum += errorb;
- if((fabs(errorb / sum) < errtol) && (errorb <= errorf))
- break;
- ++i;
- }
- i = 1;
- //
- // Now forwards recursion, the gamma function
- // recurrence relation is unstable in this direction,
- // so we rely on the magnitude of successive terms
- // decreasing faster than we introduce cancellation error.
- // For this reason it's vital that k is chosen to be *after*
- // the largest term, so that successive forward iterations
- // are strictly (and rapidly) converging.
- //
- do
- {
- xtermf = xtermf * x / (a + i - 1);
- gamkf = gamkf - xtermf;
- poiskf = poiskf * del / (k + i);
- errorf = poiskf * gamkf;
- sum += errorf;
- ++i;
- }while((fabs(errorf / sum) > errtol) && (static_cast<std::uintmax_t>(i) < max_iter));
- //Error check:
- if(static_cast<std::uintmax_t>(i) >= max_iter)
- return policies::raise_evaluation_error(
- "cdf(non_central_chi_squared_distribution<%1%>, %1%)",
- "Series did not converge, closest value was %1%", sum, pol);
- return sum;
- }
- template <class T, class Policy>
- T non_central_chi_square_pdf(T x, T n, T lambda, const Policy& pol)
- {
- //
- // As above but for the PDF:
- //
- BOOST_MATH_STD_USING
- std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- T errtol = boost::math::policies::get_epsilon<T, Policy>();
- T x2 = x / 2;
- T n2 = n / 2;
- T l2 = lambda / 2;
- T sum = 0;
- long long k = lltrunc(l2);
- T pois = gamma_p_derivative(static_cast<T>(k + 1), l2, pol) * gamma_p_derivative(static_cast<T>(n2 + k), x2);
- if(pois == 0)
- return 0;
- T poisb = pois;
- for(long long i = k; ; ++i)
- {
- sum += pois;
- if(pois / sum < errtol)
- break;
- if(static_cast<std::uintmax_t>(i - k) >= max_iter)
- return policies::raise_evaluation_error(
- "pdf(non_central_chi_squared_distribution<%1%>, %1%)",
- "Series did not converge, closest value was %1%", sum, pol);
- pois *= l2 * x2 / ((i + 1) * (n2 + i));
- }
- for(long long i = k - 1; i >= 0; --i)
- {
- poisb *= (i + 1) * (n2 + i) / (l2 * x2);
- sum += poisb;
- if(poisb / sum < errtol)
- break;
- }
- return sum / 2;
- }
- template <class RealType, class Policy>
- inline RealType non_central_chi_squared_cdf(RealType x, RealType k, RealType l, bool invert, const Policy&)
- {
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- BOOST_MATH_STD_USING
- value_type result;
- if(l == 0)
- return invert == false ? cdf(boost::math::chi_squared_distribution<RealType, Policy>(k), x) : cdf(complement(boost::math::chi_squared_distribution<RealType, Policy>(k), x));
- else if(x > k + l)
- {
- // Complement is the smaller of the two:
- result = detail::non_central_chi_square_q(
- static_cast<value_type>(x),
- static_cast<value_type>(k),
- static_cast<value_type>(l),
- forwarding_policy(),
- static_cast<value_type>(invert ? 0 : -1));
- invert = !invert;
- }
- else if(l < 200)
- {
- // For small values of the non-centrality parameter
- // we can use Ding's method:
- result = detail::non_central_chi_square_p_ding(
- static_cast<value_type>(x),
- static_cast<value_type>(k),
- static_cast<value_type>(l),
- forwarding_policy(),
- static_cast<value_type>(invert ? -1 : 0));
- }
- else
- {
- // For largers values of the non-centrality
- // parameter Ding's method will consume an
- // extra-ordinary number of terms, and worse
- // may return zero when the result is in fact
- // finite, use Krishnamoorthy's method instead:
- result = detail::non_central_chi_square_p(
- static_cast<value_type>(x),
- static_cast<value_type>(k),
- static_cast<value_type>(l),
- forwarding_policy(),
- static_cast<value_type>(invert ? -1 : 0));
- }
- if(invert)
- result = -result;
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- "boost::math::non_central_chi_squared_cdf<%1%>(%1%, %1%, %1%)");
- }
- template <class T, class Policy>
- struct nccs_quantile_functor
- {
- nccs_quantile_functor(const non_central_chi_squared_distribution<T,Policy>& d, T t, bool c)
- : dist(d), target(t), comp(c) {}
- T operator()(const T& x)
- {
- return comp ?
- target - cdf(complement(dist, x))
- : cdf(dist, x) - target;
- }
- private:
- non_central_chi_squared_distribution<T,Policy> dist;
- T target;
- bool comp;
- };
- template <class RealType, class Policy>
- RealType nccs_quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p, bool comp)
- {
- BOOST_MATH_STD_USING
- static const char* function = "quantile(non_central_chi_squared_distribution<%1%>, %1%)";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- value_type k = dist.degrees_of_freedom();
- value_type l = dist.non_centrality();
- value_type r;
- if(!detail::check_df(
- function,
- k, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy())
- ||
- !detail::check_probability(
- function,
- static_cast<value_type>(p),
- &r,
- Policy()))
- return static_cast<RealType>(r);
- //
- // Special cases get short-circuited first:
- //
- if(p == 0)
- return comp ? policies::raise_overflow_error<RealType>(function, 0, Policy()) : 0;
- if(p == 1)
- return comp ? 0 : policies::raise_overflow_error<RealType>(function, 0, Policy());
- //
- // This is Pearson's approximation to the quantile, see
- // Pearson, E. S. (1959) "Note on an approximation to the distribution of
- // noncentral chi squared", Biometrika 46: 364.
- // See also:
- // "A comparison of approximations to percentiles of the noncentral chi2-distribution",
- // Hardeo Sahai and Mario Miguel Ojeda, Revista de Matematica: Teoria y Aplicaciones 2003 10(1-2) : 57-76.
- // Note that the latter reference refers to an approximation of the CDF, when they really mean the quantile.
- //
- value_type b = -(l * l) / (k + 3 * l);
- value_type c = (k + 3 * l) / (k + 2 * l);
- value_type ff = (k + 2 * l) / (c * c);
- value_type guess;
- if(comp)
- {
- guess = b + c * quantile(complement(chi_squared_distribution<value_type, forwarding_policy>(ff), p));
- }
- else
- {
- guess = b + c * quantile(chi_squared_distribution<value_type, forwarding_policy>(ff), p);
- }
- //
- // Sometimes guess goes very small or negative, in that case we have
- // to do something else for the initial guess, this approximation
- // was provided in a private communication from Thomas Luu, PhD candidate,
- // University College London. It's an asymptotic expansion for the
- // quantile which usually gets us within an order of magnitude of the
- // correct answer.
- // Fast and accurate parallel computation of quantile functions for random number generation,
- // Thomas LuuDoctorial Thesis 2016
- // http://discovery.ucl.ac.uk/1482128/
- //
- if(guess < 0.005)
- {
- value_type pp = comp ? 1 - p : p;
- //guess = pow(pow(value_type(2), (k / 2 - 1)) * exp(l / 2) * pp * k, 2 / k);
- guess = pow(pow(value_type(2), (k / 2 - 1)) * exp(l / 2) * pp * k * boost::math::tgamma(k / 2, forwarding_policy()), (2 / k));
- if(guess == 0)
- guess = tools::min_value<value_type>();
- }
- value_type result = detail::generic_quantile(
- non_central_chi_squared_distribution<value_type, forwarding_policy>(k, l),
- p,
- guess,
- comp,
- function);
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- function);
- }
- template <class RealType, class Policy>
- RealType nccs_pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
- {
- BOOST_MATH_STD_USING
- static const char* function = "pdf(non_central_chi_squared_distribution<%1%>, %1%)";
- typedef typename policies::evaluation<RealType, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- value_type k = dist.degrees_of_freedom();
- value_type l = dist.non_centrality();
- value_type r;
- if(!detail::check_df(
- function,
- k, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy())
- ||
- !detail::check_positive_x(
- function,
- (value_type)x,
- &r,
- Policy()))
- return static_cast<RealType>(r);
- if(l == 0)
- return pdf(boost::math::chi_squared_distribution<RealType, forwarding_policy>(dist.degrees_of_freedom()), x);
- // Special case:
- if(x == 0)
- return 0;
- if(l > 50)
- {
- r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy());
- }
- else
- {
- r = log(x / l) * (k / 4 - 0.5f) - (x + l) / 2;
- if(fabs(r) >= tools::log_max_value<RealType>() / 4)
- {
- r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy());
- }
- else
- {
- r = exp(r);
- r = 0.5f * r
- * boost::math::cyl_bessel_i(k/2 - 1, sqrt(l * x), forwarding_policy());
- }
- }
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- r,
- function);
- }
- template <class RealType, class Policy>
- struct degrees_of_freedom_finder
- {
- degrees_of_freedom_finder(
- RealType lam_, RealType x_, RealType p_, bool c)
- : lam(lam_), x(x_), p(p_), comp(c) {}
- RealType operator()(const RealType& v)
- {
- non_central_chi_squared_distribution<RealType, Policy> d(v, lam);
- return comp ?
- RealType(p - cdf(complement(d, x)))
- : RealType(cdf(d, x) - p);
- }
- private:
- RealType lam;
- RealType x;
- RealType p;
- bool comp;
- };
- template <class RealType, class Policy>
- inline RealType find_degrees_of_freedom(
- RealType lam, RealType x, RealType p, RealType q, const Policy& pol)
- {
- const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
- if((p == 0) || (q == 0))
- {
- //
- // Can't a thing if one of p and q is zero:
- //
- return policies::raise_evaluation_error<RealType>(function,
- "Can't find degrees of freedom when the probability is 0 or 1, only possible answer is %1%",
- RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
- }
- degrees_of_freedom_finder<RealType, Policy> f(lam, x, p < q ? p : q, p < q ? false : true);
- tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
- std::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
- //
- // Pick an initial guess that we know will give us a probability
- // right around 0.5.
- //
- RealType guess = x - lam;
- if(guess < 1)
- guess = 1;
- std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
- f, guess, RealType(2), false, tol, max_iter, pol);
- RealType result = ir.first + (ir.second - ir.first) / 2;
- if(max_iter >= policies::get_max_root_iterations<Policy>())
- {
- return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
- " or there is no answer to problem. Current best guess is %1%", result, Policy());
- }
- return result;
- }
- template <class RealType, class Policy>
- struct non_centrality_finder
- {
- non_centrality_finder(
- RealType v_, RealType x_, RealType p_, bool c)
- : v(v_), x(x_), p(p_), comp(c) {}
- RealType operator()(const RealType& lam)
- {
- non_central_chi_squared_distribution<RealType, Policy> d(v, lam);
- return comp ?
- RealType(p - cdf(complement(d, x)))
- : RealType(cdf(d, x) - p);
- }
- private:
- RealType v;
- RealType x;
- RealType p;
- bool comp;
- };
- template <class RealType, class Policy>
- inline RealType find_non_centrality(
- RealType v, RealType x, RealType p, RealType q, const Policy& pol)
- {
- const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
- if((p == 0) || (q == 0))
- {
- //
- // Can't do a thing if one of p and q is zero:
- //
- return policies::raise_evaluation_error<RealType>(function,
- "Can't find non centrality parameter when the probability is 0 or 1, only possible answer is %1%",
- RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
- }
- non_centrality_finder<RealType, Policy> f(v, x, p < q ? p : q, p < q ? false : true);
- tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
- std::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
- //
- // Pick an initial guess that we know will give us a probability
- // right around 0.5.
- //
- RealType guess = x - v;
- if(guess < 1)
- guess = 1;
- std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
- f, guess, RealType(2), false, tol, max_iter, pol);
- RealType result = ir.first + (ir.second - ir.first) / 2;
- if(max_iter >= policies::get_max_root_iterations<Policy>())
- {
- return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
- " or there is no answer to problem. Current best guess is %1%", result, Policy());
- }
- return result;
- }
- }
- template <class RealType = double, class Policy = policies::policy<> >
- class non_central_chi_squared_distribution
- {
- public:
- typedef RealType value_type;
- typedef Policy policy_type;
- non_central_chi_squared_distribution(RealType df_, RealType lambda) : df(df_), ncp(lambda)
- {
- const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::non_central_chi_squared_distribution(%1%,%1%)";
- RealType r;
- detail::check_df(
- function,
- df, &r, Policy());
- detail::check_non_centrality(
- function,
- ncp,
- &r,
- Policy());
- } // non_central_chi_squared_distribution constructor.
- RealType degrees_of_freedom() const
- { // Private data getter function.
- return df;
- }
- RealType non_centrality() const
- { // Private data getter function.
- return ncp;
- }
- static RealType find_degrees_of_freedom(RealType lam, RealType x, RealType p)
- {
- const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
- typedef typename policies::evaluation<RealType, Policy>::type eval_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- eval_type result = detail::find_degrees_of_freedom(
- static_cast<eval_type>(lam),
- static_cast<eval_type>(x),
- static_cast<eval_type>(p),
- static_cast<eval_type>(1-p),
- forwarding_policy());
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- function);
- }
- template <class A, class B, class C>
- static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c)
- {
- const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
- typedef typename policies::evaluation<RealType, Policy>::type eval_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- eval_type result = detail::find_degrees_of_freedom(
- static_cast<eval_type>(c.dist),
- static_cast<eval_type>(c.param1),
- static_cast<eval_type>(1-c.param2),
- static_cast<eval_type>(c.param2),
- forwarding_policy());
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- function);
- }
- static RealType find_non_centrality(RealType v, RealType x, RealType p)
- {
- const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
- typedef typename policies::evaluation<RealType, Policy>::type eval_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- eval_type result = detail::find_non_centrality(
- static_cast<eval_type>(v),
- static_cast<eval_type>(x),
- static_cast<eval_type>(p),
- static_cast<eval_type>(1-p),
- forwarding_policy());
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- function);
- }
- template <class A, class B, class C>
- static RealType find_non_centrality(const complemented3_type<A,B,C>& c)
- {
- const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
- typedef typename policies::evaluation<RealType, Policy>::type eval_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- eval_type result = detail::find_non_centrality(
- static_cast<eval_type>(c.dist),
- static_cast<eval_type>(c.param1),
- static_cast<eval_type>(1-c.param2),
- static_cast<eval_type>(c.param2),
- forwarding_policy());
- return policies::checked_narrowing_cast<RealType, forwarding_policy>(
- result,
- function);
- }
- private:
- // Data member, initialized by constructor.
- RealType df; // degrees of freedom.
- RealType ncp; // non-centrality parameter
- }; // template <class RealType, class Policy> class non_central_chi_squared_distribution
- typedef non_central_chi_squared_distribution<double> non_central_chi_squared; // Reserved name of type double.
- #ifdef __cpp_deduction_guides
- template <class RealType>
- non_central_chi_squared_distribution(RealType,RealType)->non_central_chi_squared_distribution<typename boost::math::tools::promote_args<RealType>::type>;
- #endif
- // Non-member functions to give properties of the distribution.
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> range(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */)
- { // Range of permissible values for random variable k.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer?
- }
- template <class RealType, class Policy>
- inline const std::pair<RealType, RealType> support(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */)
- { // Range of supported values for random variable k.
- // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
- using boost::math::tools::max_value;
- return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
- }
- template <class RealType, class Policy>
- inline RealType mean(const non_central_chi_squared_distribution<RealType, Policy>& dist)
- { // Mean of poisson distribution = lambda.
- const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::mean()";
- RealType k = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df(
- function,
- k, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy()))
- return static_cast<RealType>(r);
- return k + l;
- } // mean
- template <class RealType, class Policy>
- inline RealType mode(const non_central_chi_squared_distribution<RealType, Policy>& dist)
- { // mode.
- static const char* function = "mode(non_central_chi_squared_distribution<%1%> const&)";
- RealType k = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df(
- function,
- k, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy()))
- return static_cast<RealType>(r);
- bool asymptotic_mode = k < l/4;
- RealType starting_point = asymptotic_mode ? k + l - RealType(3) : RealType(1) + k;
- return detail::generic_find_mode(dist, starting_point, function);
- }
- template <class RealType, class Policy>
- inline RealType variance(const non_central_chi_squared_distribution<RealType, Policy>& dist)
- { // variance.
- const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::variance()";
- RealType k = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df(
- function,
- k, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy()))
- return static_cast<RealType>(r);
- return 2 * (2 * l + k);
- }
- // RealType standard_deviation(const non_central_chi_squared_distribution<RealType, Policy>& dist)
- // standard_deviation provided by derived accessors.
- template <class RealType, class Policy>
- inline RealType skewness(const non_central_chi_squared_distribution<RealType, Policy>& dist)
- { // skewness = sqrt(l).
- const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::skewness()";
- RealType k = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df(
- function,
- k, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy()))
- return static_cast<RealType>(r);
- BOOST_MATH_STD_USING
- return pow(2 / (k + 2 * l), RealType(3)/2) * (k + 3 * l);
- }
- template <class RealType, class Policy>
- inline RealType kurtosis_excess(const non_central_chi_squared_distribution<RealType, Policy>& dist)
- {
- const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::kurtosis_excess()";
- RealType k = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df(
- function,
- k, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy()))
- return static_cast<RealType>(r);
- return 12 * (k + 4 * l) / ((k + 2 * l) * (k + 2 * l));
- } // kurtosis_excess
- template <class RealType, class Policy>
- inline RealType kurtosis(const non_central_chi_squared_distribution<RealType, Policy>& dist)
- {
- return kurtosis_excess(dist) + 3;
- }
- template <class RealType, class Policy>
- inline RealType pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
- { // Probability Density/Mass Function.
- return detail::nccs_pdf(dist, x);
- } // pdf
- template <class RealType, class Policy>
- RealType cdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
- {
- const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)";
- RealType k = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df(
- function,
- k, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy())
- ||
- !detail::check_positive_x(
- function,
- x,
- &r,
- Policy()))
- return static_cast<RealType>(r);
- return detail::non_central_chi_squared_cdf(x, k, l, false, Policy());
- } // cdf
- template <class RealType, class Policy>
- RealType cdf(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c)
- { // Complemented Cumulative Distribution Function
- const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)";
- non_central_chi_squared_distribution<RealType, Policy> const& dist = c.dist;
- RealType x = c.param;
- RealType k = dist.degrees_of_freedom();
- RealType l = dist.non_centrality();
- RealType r;
- if(!detail::check_df(
- function,
- k, &r, Policy())
- ||
- !detail::check_non_centrality(
- function,
- l,
- &r,
- Policy())
- ||
- !detail::check_positive_x(
- function,
- x,
- &r,
- Policy()))
- return static_cast<RealType>(r);
- return detail::non_central_chi_squared_cdf(x, k, l, true, Policy());
- } // ccdf
- template <class RealType, class Policy>
- inline RealType quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p)
- { // Quantile (or Percent Point) function.
- return detail::nccs_quantile(dist, p, false);
- } // quantile
- template <class RealType, class Policy>
- inline RealType quantile(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c)
- { // Quantile (or Percent Point) function.
- return detail::nccs_quantile(c.dist, c.param, true);
- } // quantile complement.
- } // namespace math
- } // namespace boost
- // This include must be at the end, *after* the accessors
- // for this distribution have been defined, in order to
- // keep compilers that support two-phase lookup happy.
- #include <boost/math/distributions/detail/derived_accessors.hpp>
- #endif // BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
|