#ifndef BOOST_LEAF_DETAIL_MP11_HPP_INCLUDED #define BOOST_LEAF_DETAIL_MP11_HPP_INCLUDED // Copyright 2015-2017 Peter Dimov. // Copyright 2018-2023 Emil Dotchevski and Reverge Studios, Inc. // // Distributed under the Boost Software License, Version 1.0. // // See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt #include <type_traits> #include <cstddef> namespace boost { namespace leaf { namespace leaf_detail_mp11 { // mp_list<T...> template<class... T> struct mp_list { }; // mp_identity template<class T> struct mp_identity { using type = T; }; // mp_inherit template<class... T> struct mp_inherit: T... {}; // mp_if, mp_if_c namespace detail { template<bool C, class T, class... E> struct mp_if_c_impl { }; template<class T, class... E> struct mp_if_c_impl<true, T, E...> { using type = T; }; template<class T, class E> struct mp_if_c_impl<false, T, E> { using type = E; }; } // namespace detail template<bool C, class T, class... E> using mp_if_c = typename detail::mp_if_c_impl<C, T, E...>::type; template<class C, class T, class... E> using mp_if = typename detail::mp_if_c_impl<static_cast<bool>(C::value), T, E...>::type; // mp_bool template<bool B> using mp_bool = std::integral_constant<bool, B>; using mp_true = mp_bool<true>; using mp_false = mp_bool<false>; // mp_to_bool template<class T> using mp_to_bool = mp_bool<static_cast<bool>( T::value )>; // mp_not<T> template<class T> using mp_not = mp_bool< !T::value >; // mp_int template<int I> using mp_int = std::integral_constant<int, I>; // mp_size_t template<std::size_t N> using mp_size_t = std::integral_constant<std::size_t, N>; // mp_set_contains<S, V> namespace detail { template<class S, class V> struct mp_set_contains_impl; template<template<class...> class L, class... T, class V> struct mp_set_contains_impl<L<T...>, V> { using type = mp_to_bool<std::is_base_of<mp_identity<V>, mp_inherit<mp_identity<T>...> > >; }; } // namespace detail template<class S, class V> using mp_set_contains = typename detail::mp_set_contains_impl<S, V>::type; // mp_set_push_back<S, T...> namespace detail { template<class S, class... T> struct mp_set_push_back_impl; template<template<class...> class L, class... U> struct mp_set_push_back_impl<L<U...>> { using type = L<U...>; }; template<template<class...> class L, class... U, class T1, class... T> struct mp_set_push_back_impl<L<U...>, T1, T...> { using S = mp_if<mp_set_contains<L<U...>, T1>, L<U...>, L<U..., T1>>; using type = typename mp_set_push_back_impl<S, T...>::type; }; } // namespace detail template<class S, class... T> using mp_set_push_back = typename detail::mp_set_push_back_impl<S, T...>::type; // mp_unique<L> namespace detail { template<class L> struct mp_unique_impl; template<template<class...> class L, class... T> struct mp_unique_impl<L<T...>> { using type = mp_set_push_back<L<>, T...>; }; } // namespace detail template<class L> using mp_unique = typename detail::mp_unique_impl<L>::type; // mp_append<L...> namespace detail { template<class... L> struct mp_append_impl; template<> struct mp_append_impl<> { using type = mp_list<>; }; template<template<class...> class L, class... T> struct mp_append_impl<L<T...>> { using type = L<T...>; }; template<template<class...> class L1, class... T1, template<class...> class L2, class... T2, class... Lr> struct mp_append_impl<L1<T1...>, L2<T2...>, Lr...> { using type = typename mp_append_impl<L1<T1..., T2...>, Lr...>::type; }; } template<class... L> using mp_append = typename detail::mp_append_impl<L...>::type; // mp_front<L> namespace detail { template<class L> struct mp_front_impl { // An error "no type named 'type'" here means that the argument to mp_front // is either not a list, or is an empty list }; template<template<class...> class L, class T1, class... T> struct mp_front_impl<L<T1, T...>> { using type = T1; }; } // namespace detail template<class L> using mp_front = typename detail::mp_front_impl<L>::type; // mp_pop_front<L> namespace detail { template<class L> struct mp_pop_front_impl { // An error "no type named 'type'" here means that the argument to mp_pop_front // is either not a list, or is an empty list }; template<template<class...> class L, class T1, class... T> struct mp_pop_front_impl<L<T1, T...>> { using type = L<T...>; }; } // namespace detail template<class L> using mp_pop_front = typename detail::mp_pop_front_impl<L>::type; // mp_first<L> template<class L> using mp_first = mp_front<L>; // mp_rest<L> template<class L> using mp_rest = mp_pop_front<L>; // mp_remove_if<L, P> namespace detail { template<class L, template<class...> class P> struct mp_remove_if_impl; template<template<class...> class L, class... T, template<class...> class P> struct mp_remove_if_impl<L<T...>, P> { template<class U> using _f = mp_if<P<U>, mp_list<>, mp_list<U>>; using type = mp_append<L<>, _f<T>...>; }; } // namespace detail template<class L, template<class...> class P> using mp_remove_if = typename detail::mp_remove_if_impl<L, P>::type; // integer_sequence template<class T, T... I> struct integer_sequence { }; // detail::make_integer_sequence_impl namespace detail { // iseq_if_c template<bool C, class T, class E> struct iseq_if_c_impl; template<class T, class E> struct iseq_if_c_impl<true, T, E> { using type = T; }; template<class T, class E> struct iseq_if_c_impl<false, T, E> { using type = E; }; template<bool C, class T, class E> using iseq_if_c = typename iseq_if_c_impl<C, T, E>::type; // iseq_identity template<class T> struct iseq_identity { using type = T; }; template<class S1, class S2> struct append_integer_sequence; template<class T, T... I, T... J> struct append_integer_sequence<integer_sequence<T, I...>, integer_sequence<T, J...>> { using type = integer_sequence< T, I..., ( J + sizeof...(I) )... >; }; template<class T, T N> struct make_integer_sequence_impl; template<class T, T N> struct make_integer_sequence_impl_ { private: static_assert( N >= 0, "make_integer_sequence<T, N>: N must not be negative" ); static T const M = N / 2; static T const R = N % 2; using S1 = typename make_integer_sequence_impl<T, M>::type; using S2 = typename append_integer_sequence<S1, S1>::type; using S3 = typename make_integer_sequence_impl<T, R>::type; using S4 = typename append_integer_sequence<S2, S3>::type; public: using type = S4; }; template<class T, T N> struct make_integer_sequence_impl: iseq_if_c<N == 0, iseq_identity<integer_sequence<T>>, iseq_if_c<N == 1, iseq_identity<integer_sequence<T, 0>>, make_integer_sequence_impl_<T, N> > > { }; } // namespace detail // make_integer_sequence template<class T, T N> using make_integer_sequence = typename detail::make_integer_sequence_impl<T, N>::type; // index_sequence template<std::size_t... I> using index_sequence = integer_sequence<std::size_t, I...>; // make_index_sequence template<std::size_t N> using make_index_sequence = make_integer_sequence<std::size_t, N>; // index_sequence_for template<class... T> using index_sequence_for = make_integer_sequence<std::size_t, sizeof...(T)>; // implementation by Bruno Dutra (by the name is_evaluable) namespace detail { template<template<class...> class F, class... T> struct mp_valid_impl { template<template<class...> class G, class = G<T...>> static mp_true check(int); template<template<class...> class> static mp_false check(...); using type = decltype(check<F>(0)); }; } // namespace detail template<template<class...> class F, class... T> using mp_valid = typename detail::mp_valid_impl<F, T...>::type; } } } #endif