/*=============================================================================
    Boost.Wave: A Standard compliant C++ preprocessor library

    Definition of the preprocessor iterator

    http://www.boost.org/

    Copyright (c) 2001-2012 Hartmut Kaiser. Distributed under the Boost
    Software License, Version 1.0. (See accompanying file
    LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
=============================================================================*/

#if !defined(BOOST_CPP_ITERATOR_HPP_175CA88F_7273_43FA_9039_BCF7459E1F29_INCLUDED)
#define BOOST_CPP_ITERATOR_HPP_175CA88F_7273_43FA_9039_BCF7459E1F29_INCLUDED

#include <string>
#include <vector>
#include <list>
#include <cstdlib>
#include <cctype>

#include <boost/assert.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/filesystem/path.hpp>
#include <boost/filesystem/operations.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/spirit/include/classic_multi_pass.hpp>
#include <boost/spirit/include/classic_parse_tree_utils.hpp>

#include <boost/wave/wave_config.hpp>
#include <boost/pool/pool_alloc.hpp>

#include <boost/wave/util/insert_whitespace_detection.hpp>
#include <boost/wave/util/macro_helpers.hpp>
#include <boost/wave/util/cpp_macromap_utils.hpp>
#include <boost/wave/util/interpret_pragma.hpp>
#include <boost/wave/util/transform_iterator.hpp>
#include <boost/wave/util/functor_input.hpp>
#include <boost/wave/util/filesystem_compatibility.hpp>

#include <boost/wave/grammars/cpp_grammar_gen.hpp>
#include <boost/wave/grammars/cpp_expression_grammar_gen.hpp>
#if BOOST_WAVE_ENABLE_COMMANDLINE_MACROS != 0
#include <boost/wave/grammars/cpp_predef_macros_gen.hpp>
#endif

#include <boost/wave/whitespace_handling.hpp>
#include <boost/wave/cpp_iteration_context.hpp>
#include <boost/wave/cpp_exceptions.hpp>
#include <boost/wave/language_support.hpp>

// this must occur after all of the includes and before any code appears
#ifdef BOOST_HAS_ABI_HEADERS
#include BOOST_ABI_PREFIX
#endif

///////////////////////////////////////////////////////////////////////////////
namespace boost {
namespace wave {
namespace util {

///////////////////////////////////////////////////////////////////////////////
// retrieve the macro name from the parse tree
template <
    typename ContextT, typename ParseNodeT, typename TokenT,
    typename PositionT
>
inline bool
retrieve_macroname(ContextT& ctx, ParseNodeT const &node,
    boost::spirit::classic::parser_id id, TokenT &macroname, PositionT& act_pos,
    bool update_position)
{
    ParseNodeT const* name_node = 0;

    using boost::spirit::classic::find_node;
    if (!find_node(node, id, &name_node))
    {
        // ill formed define statement (unexpected, should not happen)
        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_define_statement,
            "bad parse tree (unexpected)", act_pos);
        return false;
    }

    typename ParseNodeT::children_t const& children = name_node->children;

    if (0 == children.size() ||
        children.front().value.begin() == children.front().value.end())
    {
        // ill formed define statement (unexpected, should not happen)
        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_define_statement,
            "bad parse tree (unexpected)", act_pos);
        return false;
    }

    // retrieve the macro name
    macroname = *children.front().value.begin();
    if (update_position) {
        macroname.set_position(act_pos);
        act_pos.set_column(act_pos.get_column() + macroname.get_value().size());
    }
    return true;
}

///////////////////////////////////////////////////////////////////////////////
// retrieve the macro parameters or the macro definition from the parse tree
template <typename ParseNodeT, typename ContainerT, typename PositionT>
inline bool
retrieve_macrodefinition(
    ParseNodeT const &node, boost::spirit::classic::parser_id id,
    ContainerT &macrodefinition, PositionT& act_pos, bool update_position)
{
    using namespace boost::wave;
    typedef typename ParseNodeT::const_tree_iterator const_tree_iterator;

    // find macro parameters/macro definition inside the parse tree
    std::pair<const_tree_iterator, const_tree_iterator> nodes;

    using boost::spirit::classic::get_node_range;
    if (get_node_range(node, id, nodes)) {
        // copy all parameters to the supplied container
        typename ContainerT::iterator last_nonwhite = macrodefinition.end();
        const_tree_iterator end = nodes.second;

        for (const_tree_iterator cit = nodes.first; cit != end; ++cit) {
            if ((*cit).value.begin() != (*cit).value.end()) {
                typename ContainerT::iterator inserted = macrodefinition.insert(
                    macrodefinition.end(), *(*cit).value.begin());

                if (!IS_CATEGORY(macrodefinition.back(), WhiteSpaceTokenType) &&
                    T_NEWLINE != token_id(macrodefinition.back()) &&
                    T_EOF != token_id(macrodefinition.back()))
                {
                    last_nonwhite = inserted;
                }

                if (update_position) {
                    (*inserted).set_position(act_pos);
                    act_pos.set_column(
                        act_pos.get_column() + (*inserted).get_value().size());
                }
            }
        }

        // trim trailing whitespace (leading whitespace is trimmed by the grammar)
        if (last_nonwhite != macrodefinition.end()) {
            if (update_position) {
                act_pos.set_column((*last_nonwhite).get_position().get_column() +
                    (*last_nonwhite).get_value().size());
            }
            macrodefinition.erase(++last_nonwhite, macrodefinition.end());
        }
        return true;
    }
    return false;
}

#if BOOST_WAVE_ENABLE_COMMANDLINE_MACROS != 0
///////////////////////////////////////////////////////////////////////////////
//  add an additional predefined macro given by a string (MACRO(x)=definition)
template <typename ContextT>
bool add_macro_definition(ContextT &ctx, std::string macrostring,
    bool is_predefined, boost::wave::language_support language)
{
    typedef typename ContextT::token_type token_type;
    typedef typename ContextT::lexer_type lexer_type;
    typedef typename token_type::position_type position_type;
    typedef boost::wave::grammars::predefined_macros_grammar_gen<lexer_type>
        predef_macros_type;

    using namespace boost::wave;
    using namespace std;    // isspace is in std namespace for some systems

    // skip leading whitespace
    std::string::iterator begin = macrostring.begin();
    std::string::iterator end = macrostring.end();

    while(begin != end && isspace(*begin))
        ++begin;

    // parse the macro definition
    position_type act_pos("<command line>");
    boost::spirit::classic::tree_parse_info<lexer_type> hit =
        predef_macros_type::parse_predefined_macro(
            lexer_type(begin, end, position_type(), language), lexer_type());

    if (!hit.match || (!hit.full && T_EOF != token_id(*hit.stop))) {
        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_macro_definition,
            macrostring.c_str(), act_pos);
        return false;
    }

    // retrieve the macro definition from the parse tree
    token_type macroname;
    std::vector<token_type> macroparameters;
    typename ContextT::token_sequence_type macrodefinition;
    bool has_parameters = false;

    if (!boost::wave::util::retrieve_macroname(ctx, *hit.trees.begin(),
            BOOST_WAVE_PLAIN_DEFINE_ID, macroname, act_pos, true))
        return false;
    has_parameters = boost::wave::util::retrieve_macrodefinition(*hit.trees.begin(),
        BOOST_WAVE_MACRO_PARAMETERS_ID, macroparameters, act_pos, true);
    boost::wave::util::retrieve_macrodefinition(*hit.trees.begin(),
        BOOST_WAVE_MACRO_DEFINITION_ID, macrodefinition, act_pos, true);

    // get rid of trailing T_EOF
    if (!macrodefinition.empty() && token_id(macrodefinition.back()) == T_EOF)
        macrodefinition.pop_back();

    //  If no macrodefinition is given, and the macro string does not end with a
    //  '=', then the macro should be defined with the value '1'
    if (macrodefinition.empty() && '=' != macrostring[macrostring.size()-1])
        macrodefinition.push_back(token_type(T_INTLIT, "1", act_pos));

    // add the new macro to the macromap
    return ctx.add_macro_definition(macroname, has_parameters, macroparameters,
        macrodefinition, is_predefined);
}
#endif // BOOST_WAVE_ENABLE_COMMANDLINE_MACROS != 0

///////////////////////////////////////////////////////////////////////////////
}   // namespace util

///////////////////////////////////////////////////////////////////////////////
//  forward declaration
template <typename ContextT> class pp_iterator;

namespace impl {

///////////////////////////////////////////////////////////////////////////////
//
//  pp_iterator_functor
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
class pp_iterator_functor {

public:
    // interface to the boost::spirit::classic::iterator_policies::functor_input policy
    typedef typename ContextT::token_type               result_type;

    //  eof token
    static result_type const eof;

private:
    // type of a token sequence
    typedef typename ContextT::token_sequence_type      token_sequence_type;

    typedef typename ContextT::lexer_type               lexer_type;
    typedef typename result_type::string_type           string_type;
    typedef typename result_type::position_type         position_type;
    typedef boost::wave::grammars::cpp_grammar_gen<lexer_type, token_sequence_type>
        cpp_grammar_type;

    //  iteration context related types (an iteration context represents a current
    //  position in an included file)
    typedef base_iteration_context<ContextT, lexer_type>
        base_iteration_context_type;
    typedef iteration_context<ContextT, lexer_type> iteration_context_type;

    // parse tree related types
    typedef typename cpp_grammar_type::node_factory_type node_factory_type;
    typedef boost::spirit::classic::tree_parse_info<lexer_type, node_factory_type>
        tree_parse_info_type;
    typedef boost::spirit::classic::tree_match<lexer_type, node_factory_type>
        parse_tree_match_type;
    typedef typename parse_tree_match_type::node_t       parse_node_type;       // tree_node<node_val_data<> >
    typedef typename parse_tree_match_type::parse_node_t parse_node_value_type; // node_val_data<>
    typedef typename parse_tree_match_type::container_t  parse_tree_type;       // parse_node_type::children_t

public:
    template <typename IteratorT>
    pp_iterator_functor(ContextT &ctx_, IteratorT const &first_,
            IteratorT const &last_, typename ContextT::position_type const &pos_)
    :   ctx(ctx_),
        iter_ctx(new base_iteration_context_type(ctx,
                lexer_type(first_, last_, pos_,
                    boost::wave::enable_prefer_pp_numbers(ctx.get_language())),
                lexer_type(),
                pos_.get_file().c_str()
            )),
        seen_newline(true), skipped_newline(false),
        must_emit_line_directive(false), act_pos(ctx_.get_main_pos()),
        whitespace(boost::wave::need_insert_whitespace(ctx.get_language()))
    {
        act_pos.set_file(pos_.get_file());
#if BOOST_WAVE_SUPPORT_PRAGMA_ONCE != 0
        ctx_.set_current_filename(pos_.get_file().c_str());
#endif
        iter_ctx->emitted_lines = (unsigned int)(-1);   // force #line directive
    }

    // get the next preprocessed token
    result_type const &operator()();

    // get the last recognized token (for error processing etc.)
    result_type const &current_token() const { return act_token; }

protected:
    friend class pp_iterator<ContextT>;
    bool on_include_helper(char const *t, char const *s, bool is_system,
        bool include_next);

protected:
    result_type const &get_next_token();
    result_type const &pp_token();

    template <typename IteratorT>
    bool extract_identifier(IteratorT &it);
    template <typename IteratorT>
    bool ensure_is_last_on_line(IteratorT& it, bool call_hook = true);
    template <typename IteratorT>
    bool skip_to_eol_with_check(IteratorT &it, bool call_hook = true);

    bool pp_directive();
    template <typename IteratorT>
    bool handle_pp_directive(IteratorT &it);
    bool dispatch_directive(tree_parse_info_type const &hit,
        result_type const& found_directive,
        token_sequence_type const& found_eoltokens);
    void replace_undefined_identifiers(token_sequence_type &expanded);

    void on_include(string_type const &s, bool is_system, bool include_next);
    void on_include(typename parse_tree_type::const_iterator const &begin,
        typename parse_tree_type::const_iterator const &end, bool include_next);

    void on_define(parse_node_type const &node);
    void on_undefine(lexer_type const &it);

    void on_ifdef(result_type const& found_directive,
        typename parse_tree_type::const_iterator const &begin,
        typename parse_tree_type::const_iterator const &end);
    void on_ifndef(result_type const& found_directive,
        typename parse_tree_type::const_iterator const &begin,
        typename parse_tree_type::const_iterator const &end);
    void on_else();
    void on_endif();
    void on_illformed(typename result_type::string_type s);

    void on_line(typename parse_tree_type::const_iterator const &begin,
        typename parse_tree_type::const_iterator const &end);
    void on_if(result_type const& found_directive,
        typename parse_tree_type::const_iterator const &begin,
        typename parse_tree_type::const_iterator const &end);
    void on_elif(result_type const& found_directive,
        typename parse_tree_type::const_iterator const &begin,
        typename parse_tree_type::const_iterator const &end);
    void on_error(typename parse_tree_type::const_iterator const &begin,
        typename parse_tree_type::const_iterator const &end);
#if BOOST_WAVE_SUPPORT_WARNING_DIRECTIVE != 0
    void on_warning(typename parse_tree_type::const_iterator const &begin,
        typename parse_tree_type::const_iterator const &end);
#endif
    bool on_pragma(typename parse_tree_type::const_iterator const &begin,
        typename parse_tree_type::const_iterator const &end);

    bool emit_line_directive();
    bool returned_from_include();

    bool interpret_pragma(token_sequence_type const &pragma_body,
        token_sequence_type &result);

private:
    ContextT &ctx;              // context, this iterator is associated with
    boost::shared_ptr<base_iteration_context_type> iter_ctx;

    bool seen_newline;              // needed for recognizing begin of line
    bool skipped_newline;           // a newline has been skipped since last one
    bool must_emit_line_directive;  // must emit a line directive
    result_type act_token;          // current token
    typename result_type::position_type &act_pos;   // current fileposition (references the macromap)

    token_sequence_type unput_queue;     // tokens to be preprocessed again
    token_sequence_type pending_queue;   // tokens already preprocessed

    // detect whether to insert additional whitespace in between two adjacent
    // tokens, which otherwise would form a different token type, if
    // re-tokenized
    boost::wave::util::insert_whitespace_detection whitespace;
};

///////////////////////////////////////////////////////////////////////////////
//  eof token
template <typename ContextT>
typename pp_iterator_functor<ContextT>::result_type const
    pp_iterator_functor<ContextT>::eof;

///////////////////////////////////////////////////////////////////////////////
//
//  returned_from_include()
//
//      Tests if it is necessary to pop the include file context (eof inside
//      a file was reached). If yes, it pops this context. Preprocessing will
//      continue with the next outer file scope.
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::returned_from_include()
{
    if (iter_ctx->first == iter_ctx->last && ctx.get_iteration_depth() > 0) {
        // call the include policy trace function
        ctx.get_hooks().returning_from_include_file(ctx.derived());

    // restore the previous iteration context after finishing the preprocessing
    // of the included file
        BOOST_WAVE_STRINGTYPE oldfile = iter_ctx->real_filename;
        position_type old_pos (act_pos);

        // if this file has include guards handle it as if it had a #pragma once
#if BOOST_WAVE_SUPPORT_PRAGMA_ONCE != 0
        if (need_include_guard_detection(ctx.get_language())) {
            std::string guard_name;
            if (iter_ctx->first.has_include_guards(guard_name))
                ctx.add_pragma_once_header(ctx.get_current_filename(), guard_name);
        }
#endif
        iter_ctx = ctx.pop_iteration_context();

        must_emit_line_directive = true;
        iter_ctx->emitted_lines = (unsigned int)(-1);   // force #line directive
        seen_newline = true;

        // restore current file position
        act_pos.set_file(iter_ctx->filename);
        act_pos.set_line(iter_ctx->line);
        act_pos.set_column(0);

        // restore the actual current file and directory
#if BOOST_WAVE_SUPPORT_PRAGMA_ONCE != 0
        namespace fs = boost::filesystem;
        fs::path rfp(wave::util::create_path(iter_ctx->real_filename.c_str()));
        std::string real_filename(rfp.string());
        ctx.set_current_filename(real_filename.c_str());
#endif
        ctx.set_current_directory(iter_ctx->real_filename.c_str());
        ctx.set_current_relative_filename(iter_ctx->real_relative_filename.c_str());

        // ensure the integrity of the #if/#endif stack
        // report unbalanced #if/#endif now to make it possible to recover properly
        if (iter_ctx->if_block_depth != ctx.get_if_block_depth()) {
            using boost::wave::util::impl::escape_lit;
            BOOST_WAVE_STRINGTYPE msg(escape_lit(oldfile));
            BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, unbalanced_if_endif,
                msg.c_str(), old_pos);
        }
        return true;
    }
    return false;
}

///////////////////////////////////////////////////////////////////////////////
//
//  operator()(): get the next preprocessed token
//
//      throws a preprocess_exception, if appropriate
//
///////////////////////////////////////////////////////////////////////////////
namespace impl {

    //  It may be necessary to emit a #line directive either
    //  - when comments need to be preserved: if the current token is not a
    //    whitespace, except comments
    //  - when comments are to be skipped: if the current token is not a
    //    whitespace token.
    template <typename ContextT>
    bool consider_emitting_line_directive(ContextT const& ctx, token_id id)
    {
        if (need_preserve_comments(ctx.get_language()))
        {
            if (!IS_CATEGORY(id, EOLTokenType) && !IS_CATEGORY(id, EOFTokenType))
            {
                return true;
            }
        }
        if (!IS_CATEGORY(id, WhiteSpaceTokenType) &&
            !IS_CATEGORY(id, EOLTokenType) && !IS_CATEGORY(id, EOFTokenType))
        {
            return true;
        }
        return false;
    }
}

template <typename ContextT>
inline typename pp_iterator_functor<ContextT>::result_type const &
pp_iterator_functor<ContextT>::operator()()
{
    using namespace boost::wave;

    // make sure the cwd has been initialized
    ctx.init_context();

    // loop over skip able whitespace until something significant is found
    bool was_seen_newline = seen_newline;
    bool was_skipped_newline = skipped_newline;
    token_id id = T_UNKNOWN;

    try {   // catch lexer exceptions
        do {
            if (skipped_newline) {
                was_skipped_newline = true;
                skipped_newline = false;
            }

            // get_next_token assigns result to act_token member
            get_next_token();

            // if comments shouldn't be preserved replace them with newlines
            id = token_id(act_token);
            if (!need_preserve_comments(ctx.get_language()) &&
                (T_CPPCOMMENT == id || context_policies::util::ccomment_has_newline(act_token)))
            {
                act_token.set_token_id(id = T_NEWLINE);
                act_token.set_value("\n");
            }

            if (IS_CATEGORY(id, EOLTokenType))
                seen_newline = true;

        } while (ctx.get_hooks().may_skip_whitespace(ctx.derived(), act_token, skipped_newline));
    }
    catch (boost::wave::cpplexer::lexing_exception const& e) {
        // dispatch any lexer exceptions to the context hook function
        ctx.get_hooks().throw_exception(ctx.derived(), e);
        return act_token;
    }

    // restore the accumulated skipped_newline state for next invocation
    if (was_skipped_newline)
        skipped_newline = true;

    // if there were skipped any newlines, we must emit a #line directive
    if ((must_emit_line_directive || (was_seen_newline && skipped_newline)) &&
        impl::consider_emitting_line_directive(ctx, id))
    {
        // must emit a #line directive
        if (need_emit_line_directives(ctx.get_language()) && emit_line_directive())
        {
            skipped_newline = false;
            ctx.get_hooks().may_skip_whitespace(ctx.derived(), act_token, skipped_newline);     // feed ws eater FSM
            id = token_id(act_token);
        }
    }

    // cleanup of certain tokens required
    seen_newline = false;
    switch (id) {
    case T_NONREPLACABLE_IDENTIFIER:
        act_token.set_token_id(id = T_IDENTIFIER);
        break;

    case T_GENERATEDNEWLINE:  // was generated by emit_line_directive()
        act_token.set_token_id(id = T_NEWLINE);
        ++iter_ctx->emitted_lines;
        seen_newline = true;
        break;

    case T_NEWLINE:
    case T_CPPCOMMENT:
        seen_newline = true;
        ++iter_ctx->emitted_lines;
        break;

#if BOOST_WAVE_SUPPORT_CPP0X != 0
    case T_RAWSTRINGLIT:
        iter_ctx->emitted_lines +=
            context_policies::util::rawstring_count_newlines(act_token);
        break;
#endif

    case T_CCOMMENT:          // will come here only if whitespace is preserved
        iter_ctx->emitted_lines +=
            context_policies::util::ccomment_count_newlines(act_token);
        break;

    case T_PP_NUMBER:        // re-tokenize the pp-number
        {
            token_sequence_type rescanned;

            std::string pp_number(
                util::to_string<std::string>(act_token.get_value()));

            lexer_type it = lexer_type(pp_number.begin(),
                pp_number.end(), act_token.get_position(),
                ctx.get_language());
            lexer_type end = lexer_type();

            for (/**/; it != end && T_EOF != token_id(*it); ++it)
                rescanned.push_back(*it);

            pending_queue.splice(pending_queue.begin(), rescanned);
            act_token = pending_queue.front();
            id = token_id(act_token);
            pending_queue.pop_front();
        }
        break;

    case T_EOF:
        seen_newline = true;
        break;

    default:    // make sure whitespace at line begin keeps seen_newline status
        if (IS_CATEGORY(id, WhiteSpaceTokenType))
            seen_newline = was_seen_newline;
        break;
    }

    if (token_is_valid(act_token) && whitespace.must_insert(id, act_token.get_value())) {
        // must insert some whitespace into the output stream to avoid adjacent
        // tokens, which would form different (and wrong) tokens
        whitespace.shift_tokens(T_SPACE);
        pending_queue.push_front(act_token);        // push this token back
        return act_token = result_type(T_SPACE,
            typename result_type::string_type(" "),
            act_token.get_position());
    }
    whitespace.shift_tokens(id);
    return ctx.get_hooks().generated_token(ctx.derived(), act_token);
}

///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline typename pp_iterator_functor<ContextT>::result_type const &
pp_iterator_functor<ContextT>::get_next_token()
{
    using namespace boost::wave;

    // if there is something in the unput_queue, then return the next token from
    // there (all tokens in the queue are preprocessed already)
    if (!pending_queue.empty() || !unput_queue.empty())
        return pp_token();      // return next token

    // test for EOF, if there is a pending input context, pop it back and continue
    // parsing with it
    bool returned_from_include_file = returned_from_include();

    // try to generate the next token
    if (iter_ctx->first != iter_ctx->last) {
        do {
            // If there are pending tokens in the queue, we'll have to return
            // these. This may happen from a #pragma directive, which got replaced
            // by some token sequence.
            if (!pending_queue.empty()) {
                util::on_exit::pop_front<token_sequence_type>
                    pop_front_token(pending_queue);

                return act_token = pending_queue.front();
            }

            // adjust the current position (line and column)
            bool was_seen_newline = seen_newline || returned_from_include_file;

            // fetch the current token
            act_token = *iter_ctx->first;
            act_pos = act_token.get_position();

            // act accordingly on the current token
            token_id id = token_id(act_token);

            if (T_EOF == id) {
                // returned from an include file, continue with the next token
                whitespace.shift_tokens(T_EOF);
                ++iter_ctx->first;

                // now make sure this line has a newline
                if ((!seen_newline || act_pos.get_column() > 1) &&
                    !need_single_line(ctx.get_language()))
                {
                    if (need_no_newline_at_end_of_file(ctx.get_language()))
                    {
                        seen_newline = true;
                        pending_queue.push_back(
                            result_type(T_NEWLINE, "\n", act_pos)
                        );
                    }
                    else
                    {
                        // warn, if this file does not end with a newline
                        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                            last_line_not_terminated, "", act_pos);
                    }
                }
                continue;   // if this is the main file, the while loop breaks
            }
            else if (T_NEWLINE == id || T_CPPCOMMENT == id) {
                // a newline is to be returned ASAP, a C++ comment too
                // (the C++ comment token includes the trailing newline)
                seen_newline = true;
                ++iter_ctx->first;

                if (!ctx.get_if_block_status()) {
                    // skip this token because of the disabled #if block
                    whitespace.shift_tokens(id);  // whitespace controller
                    util::impl::call_skipped_token_hook(ctx, act_token);
                    continue;
                }
                return act_token;
            }
            seen_newline = false;

            if (was_seen_newline && pp_directive()) {
                // a pp directive was found
//                 pending_queue.push_back(result_type(T_NEWLINE, "\n", act_pos));
//                 seen_newline = true;
//                 must_emit_line_directive = true;
                if (iter_ctx->first == iter_ctx->last)
                {
                    seen_newline = true;
                    act_token = result_type(T_NEWLINE, "\n", act_pos);
                }

                // loop to the next token to analyze
                // simply fall through, since the iterator was already adjusted
                // correctly
            }
            else if (ctx.get_if_block_status()) {
                // preprocess this token, eat up more, if appropriate, return
                // the next preprocessed token
                return pp_token();
            }
            else {
                // compilation condition is false: if the current token is a
                // newline, account for it, otherwise discard the actual token and
                // try the next one
                if (T_NEWLINE == token_id(act_token)) {
                    seen_newline = true;
                    must_emit_line_directive = true;
                }

                // next token
                util::impl::call_skipped_token_hook(ctx, act_token);
                ++iter_ctx->first;
            }

        } while ((iter_ctx->first != iter_ctx->last) ||
                 (returned_from_include_file = returned_from_include()));

        // overall eof reached
        if (ctx.get_if_block_depth() > 0 && !need_single_line(ctx.get_language()))
        {
            // missing endif directive(s)
            BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                missing_matching_endif, "", act_pos);
        }
    }
    else {
        act_token = eof;            // this is the last token
    }

//  whitespace.shift_tokens(T_EOF);     // whitespace controller
    return act_token;                   // return eof token
}

///////////////////////////////////////////////////////////////////////////////
//
//  emit_line_directive(): emits a line directive from the act_token data
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::emit_line_directive()
{
    using namespace boost::wave;

    typename ContextT::position_type pos = act_token.get_position();

//     if (must_emit_line_directive &&
//         iter_ctx->emitted_lines+1 == act_pos.get_line() &&
//         iter_ctx->filename == act_pos.get_file())
//     {
//         must_emit_line_directive = false;
//         return false;
//     }

    if (must_emit_line_directive ||
        iter_ctx->emitted_lines+1 != act_pos.get_line())
    {
        // unput the current token
        pending_queue.push_front(act_token);
        pos.set_line(act_pos.get_line());

        if (iter_ctx->emitted_lines+2 == act_pos.get_line() && act_pos.get_line() != 1) {
            // prefer to output a single newline instead of the #line directive
//             whitespace.shift_tokens(T_NEWLINE);
            act_token = result_type(T_NEWLINE, "\n", pos);
        }
        else {
            // account for the newline emitted here
            act_pos.set_line(act_pos.get_line()-1);
            iter_ctx->emitted_lines = act_pos.get_line()-1;

            token_sequence_type pending;

            if (!ctx.get_hooks().emit_line_directive(ctx, pending, act_token))
            {
                unsigned int column = 6;

                // the hook did not generate anything, emit default #line
                pos.set_column(1);
                pending.push_back(result_type(T_PP_LINE, "#line", pos));

                pos.set_column(column);      // account for '#line'
                pending.push_back(result_type(T_SPACE, " ", pos));

                // 21 is the max required size for a 64 bit integer represented as a
                // string

                std::string buffer = lexical_cast<std::string>(pos.get_line());

                pos.set_column(++column);                 // account for ' '
                pending.push_back(result_type(T_INTLIT, buffer.c_str(), pos));
                pos.set_column(column += (unsigned int)buffer.size()); // account for <number>
                pending.push_back(result_type(T_SPACE, " ", pos));
                pos.set_column(++column);                 // account for ' '

                std::string file("\"");
                boost::filesystem::path filename(
                    wave::util::create_path(act_pos.get_file().c_str()));

                using wave::util::impl::escape_lit;
                file += escape_lit(wave::util::native_file_string(filename)) + "\"";

                pending.push_back(result_type(T_STRINGLIT, file.c_str(), pos));
                pos.set_column(column += (unsigned int)file.size());    // account for filename
                pending.push_back(result_type(T_GENERATEDNEWLINE, "\n", pos));
            }

            // if there is some replacement text, insert it into the pending queue
            if (!pending.empty()) {
                pending_queue.splice(pending_queue.begin(), pending);
                act_token = pending_queue.front();
                pending_queue.pop_front();
            }
        }

        must_emit_line_directive = false;     // we are now in sync
        return true;
    }

    must_emit_line_directive = false;         // we are now in sync
    return false;
}

///////////////////////////////////////////////////////////////////////////////
//
//  pptoken(): return the next preprocessed token
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline typename pp_iterator_functor<ContextT>::result_type const &
pp_iterator_functor<ContextT>::pp_token()
{
    using namespace boost::wave;

    token_id id = token_id(*iter_ctx->first);

    // eat all T_PLACEHOLDER tokens, eventually slipped through out of the
    // macro engine
    do {
        if (!pending_queue.empty()) {
            // if there are pending tokens in the queue, return the first one
            act_token = pending_queue.front();
            pending_queue.pop_front();
            act_pos = act_token.get_position();
        }
        else if (!unput_queue.empty()
              || T_IDENTIFIER == id
              || IS_CATEGORY(id, KeywordTokenType)
              || IS_EXTCATEGORY(id, OperatorTokenType|AltExtTokenType)
              || IS_CATEGORY(id, BoolLiteralTokenType))
        {
            //  call the lexer, preprocess the required number of tokens, put them
            //  into the unput queue
            act_token = ctx.expand_tokensequence(iter_ctx->first,
                iter_ctx->last, pending_queue, unput_queue, skipped_newline);
        }
        else {
            // simply return the next token
            act_token = *iter_ctx->first;
            ++iter_ctx->first;
        }
        id = token_id(act_token);

    } while (T_PLACEHOLDER == id);
    return act_token;
}

///////////////////////////////////////////////////////////////////////////////
//
//  pp_directive(): recognize a preprocessor directive
//
///////////////////////////////////////////////////////////////////////////////
namespace impl {

    // call 'found_directive' preprocessing hook
    template <typename ContextT>
    bool call_found_directive_hook(ContextT& ctx,
        typename ContextT::token_type const& found_directive)
    {
        if (ctx.get_hooks().found_directive(ctx.derived(), found_directive))
            return true;    // skip this directive and return newline only
        return false;
    }

//     // call 'skipped_token' preprocessing hook
//     template <typename ContextT>
//     void call_skipped_token_hook(ContextT& ctx,
//         typename ContextT::token_type const& skipped)
//     {
//         ctx.get_hooks().skipped_token(ctx.derived(), skipped);
//     }

    template <typename ContextT, typename IteratorT>
    bool next_token_is_pp_directive(ContextT &ctx, IteratorT &it, IteratorT const &end)
    {
        using namespace boost::wave;

        token_id id = T_UNKNOWN;
        for (/**/; it != end; ++it) {
            id = token_id(*it);
            if (!IS_CATEGORY(id, WhiteSpaceTokenType))
                break;          // skip leading whitespace
            if (IS_CATEGORY(id, EOLTokenType) || IS_CATEGORY(id, EOFTokenType))
                break;          // do not enter a new line
            if (T_CPPCOMMENT == id ||
                context_policies::util::ccomment_has_newline(*it))
            {
                break;
            }

            // this token gets skipped
            util::impl::call_skipped_token_hook(ctx, *it);
        }
        BOOST_ASSERT(it == end || id != T_UNKNOWN);
        return it != end && IS_CATEGORY(id, PPTokenType);
    }

    // verify that there isn't anything significant left on the line
    template <typename ContextT, typename IteratorT>
    bool pp_is_last_on_line(ContextT &ctx, IteratorT &it, IteratorT const &end,
        bool call_hook = true)
    {
        using namespace boost::wave;

        // this token gets skipped
        if (call_hook)
            util::impl::call_skipped_token_hook(ctx, *it);

        for (++it; it != end; ++it) {
            token_id id = token_id(*it);

            if (T_CPPCOMMENT == id || T_NEWLINE == id ||
                context_policies::util::ccomment_has_newline(*it))
            {
                if (call_hook)
                    util::impl::call_skipped_token_hook(ctx, *it);
                ++it;           // skip eol/C/C++ comment
                return true;    // no more significant tokens on this line
            }

            if (!IS_CATEGORY(id, WhiteSpaceTokenType))
                break;

            // this token gets skipped
            if (call_hook)
                util::impl::call_skipped_token_hook(ctx, *it);
        }
        return need_no_newline_at_end_of_file(ctx.get_language()) &&
            ((it == end) || (T_EOF == token_id(*it)));
    }

    ///////////////////////////////////////////////////////////////////////////
    template <typename ContextT, typename IteratorT>
    bool skip_to_eol(ContextT &ctx, IteratorT &it, IteratorT const &end,
        bool call_hook = true)
    {
        using namespace boost::wave;

        for (/**/; it != end; ++it) {
        token_id id = token_id(*it);

            if (T_CPPCOMMENT == id || T_NEWLINE == id ||
                context_policies::util::ccomment_has_newline(*it))
            {
                // always call hook for eol
                util::impl::call_skipped_token_hook(ctx, *it);
                ++it;           // skip eol/C/C++ comment
                return true;    // found eol
            }

            if (call_hook)
                util::impl::call_skipped_token_hook(ctx, *it);
        }
        return false;
    }

    ///////////////////////////////////////////////////////////////////////////
    template <typename ContextT, typename ContainerT>
    inline void
    remove_leading_whitespace(ContextT &ctx, ContainerT& c, bool call_hook = true)
    {
        typename ContainerT::iterator it = c.begin();
        while (IS_CATEGORY(*it, WhiteSpaceTokenType)) {
            typename ContainerT::iterator save = it++;
            if (call_hook)
                util::impl::call_skipped_token_hook(ctx, *save);
            c.erase(save);
        }
    }
}

///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
template <typename IteratorT>
inline bool
pp_iterator_functor<ContextT>::extract_identifier(IteratorT &it)
{
    token_id id = util::impl::skip_whitespace(it, iter_ctx->last);
    if (T_IDENTIFIER == id || IS_CATEGORY(id, KeywordTokenType) ||
        IS_EXTCATEGORY(id, OperatorTokenType|AltExtTokenType) ||
        IS_CATEGORY(id, BoolLiteralTokenType))
    {
        IteratorT save = it;
        if (impl::pp_is_last_on_line(ctx, save, iter_ctx->last, false))
            return true;
    }

    // report the ill formed directive
    impl::skip_to_eol(ctx, it, iter_ctx->last);

    string_type str(util::impl::as_string<string_type>(iter_ctx->first, it));

    seen_newline = true;
    iter_ctx->first = it;
    on_illformed(str);
    return false;
}

///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
template <typename IteratorT>
inline bool
pp_iterator_functor<ContextT>::ensure_is_last_on_line(IteratorT& it, bool call_hook)
{
    if (!impl::pp_is_last_on_line(ctx, it, iter_ctx->last, call_hook))
    {
        // enable error recovery (start over with the next line)
        impl::skip_to_eol(ctx, it, iter_ctx->last);

        string_type str(util::impl::as_string<string_type>(iter_ctx->first, it));

        seen_newline = true;
        iter_ctx->first = it;

        // report an invalid directive
        on_illformed(str);
        return false;
    }

    if (it == iter_ctx->last && !need_single_line(ctx.get_language()))
    {
        // The line doesn't end with an eol but eof token.
        seen_newline = true;    // allow to resume after warning
        iter_ctx->first = it;

        if (!need_no_newline_at_end_of_file(ctx.get_language()))
        {
            // Trigger a warning that the last line was not terminated with a
            // newline.
            BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                last_line_not_terminated, "", act_pos);
        }

        return false;
    }
    return true;
}

template <typename ContextT>
template <typename IteratorT>
inline bool
pp_iterator_functor<ContextT>::skip_to_eol_with_check(IteratorT &it, bool call_hook)
{
    typename ContextT::string_type value ((*it).get_value());
    if (!impl::skip_to_eol(ctx, it, iter_ctx->last, call_hook) &&
        !need_single_line(ctx.get_language()))
    {
        // The line doesn't end with an eol but eof token.
        seen_newline = true;    // allow to resume after warning
        iter_ctx->first = it;

        if (!need_no_newline_at_end_of_file(ctx.get_language()))
        {
            // Trigger a warning, that the last line was not terminated with a
            // newline.
            BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                last_line_not_terminated, "", act_pos);
        }
        return false;
    }

    // normal line ending reached, adjust iterator and flag
    seen_newline = true;
    iter_ctx->first = it;
    return true;
}

///////////////////////////////////////////////////////////////////////////////
//  handle_pp_directive: handle certain pp_directives
template <typename ContextT>
template <typename IteratorT>
inline bool
pp_iterator_functor<ContextT>::handle_pp_directive(IteratorT &it)
{
    token_id id = token_id(*it);
    bool can_exit = true;
    bool call_hook_in_skip = true;
    if (!ctx.get_if_block_status()) {
        if (IS_EXTCATEGORY(*it, PPConditionalTokenType)) {
            // simulate the if block hierarchy
            switch (id) {
            case T_PP_IFDEF:        // #ifdef
            case T_PP_IFNDEF:       // #ifndef
            case T_PP_IF:           // #if
                ctx.enter_if_block(false);
                break;

            case T_PP_ELIF:         // #elif
                if (!ctx.get_enclosing_if_block_status()) {
                    if (!ctx.enter_elif_block(false)) {
                        // #else without matching #if
                        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                            missing_matching_if, "#elif", act_pos);
                        return true;  // do not analyze this directive any further
                    }
                }
                else {
                    can_exit = false;   // #elif is not always safe to skip
                }
                break;

            case T_PP_ELSE:         // #else
            case T_PP_ENDIF:        // #endif
                {
                // handle this directive
                    if (T_PP_ELSE == token_id(*it))
                        on_else();
                    else
                        on_endif();

                // make sure, there are no (non-whitespace) tokens left on
                // this line
                    ensure_is_last_on_line(it);

                // we skipped to the end of this line already
                    seen_newline = true;
                    iter_ctx->first = it;
                }
                if (T_PP_ENDIF == id)
                    must_emit_line_directive = true;
                return true;

            default:                // #something else
                on_illformed((*it).get_value());
                break;
            }
        }
        else {
            util::impl::call_skipped_token_hook(ctx, *it);
            ++it;
        }
    }
    else {
        // try to handle the simple pp directives without parsing
        result_type directive = *it;
        bool include_next = false;
        switch (id) {
        case T_PP_QHEADER:        // #include "..."
#if BOOST_WAVE_SUPPORT_INCLUDE_NEXT != 0
        case T_PP_QHEADER_NEXT:
#endif
            include_next = (T_PP_QHEADER_NEXT == id) ? true : false;
            if (!impl::call_found_directive_hook(ctx, *it))
            {
                string_type dir((*it).get_value());

                // make sure, there are no (non-whitespace) tokens left on
                // this line
                if (ensure_is_last_on_line(it))
                {
                    seen_newline = true;
                    iter_ctx->first = it;
                    on_include (dir, false, include_next);
                }
                return true;
            }
            break;

        case T_PP_HHEADER:        // #include <...>
#if BOOST_WAVE_SUPPORT_INCLUDE_NEXT != 0
        case T_PP_HHEADER_NEXT:
#endif
            include_next = (T_PP_HHEADER_NEXT == id) ? true : false;
            if (!impl::call_found_directive_hook(ctx, *it))
            {
                string_type dir((*it).get_value());

                // make sure, there are no (non-whitespace) tokens left on
                // this line
                if (ensure_is_last_on_line(it))
                {
                    seen_newline = true;
                    iter_ctx->first = it;
                    on_include (dir, true, include_next);
                }
                return true;
            }
            break;

        case T_PP_ELSE:         // #else
        case T_PP_ENDIF:        // #endif
            if (!impl::call_found_directive_hook(ctx, *it))
            {
                // handle this directive
                if (T_PP_ELSE == token_id(*it))
                    on_else();
                else
                    on_endif();

                // make sure, there are no (non-whitespace) tokens left on
                // this line
                ensure_is_last_on_line(it);

                // we skipped to the end of this line already
                seen_newline = true;
                iter_ctx->first = it;
                if (T_PP_ENDIF == id)
                    must_emit_line_directive = true;
                return true;
            }
            break;

            // extract everything on this line as arguments
//         case T_PP_IF:                   // #if
//         case T_PP_ELIF:                 // #elif
//         case T_PP_ERROR:                // #error
//         case T_PP_WARNING:              // #warning
//         case T_PP_PRAGMA:               // #pragma
//         case T_PP_LINE:                 // #line
//             break;

        // extract first non-whitespace token as argument
        case T_PP_UNDEF:                // #undef
            if (!impl::call_found_directive_hook(ctx, *it) &&
                extract_identifier(it))
            {
                on_undefine(it);
            }
            call_hook_in_skip = false;
            break;

#if BOOST_WAVE_SUPPORT_MS_EXTENSIONS != 0
//         case T_MSEXT_PP_REGION:         // #region ...
//             break;
//
//         case T_MSEXT_PP_ENDREGION:      // #endregion
//             break;
#endif

        default:
            can_exit = false;
            break;
        }
    }

    // start over with the next line, if only possible
    if (can_exit) {
        skip_to_eol_with_check(it, call_hook_in_skip);
        return true;    // may be safely ignored
    }
    return false;   // do not ignore this pp directive
}

///////////////////////////////////////////////////////////////////////////////
//  pp_directive(): recognize a preprocessor directive
template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::pp_directive()
{
    using namespace cpplexer;

    // test, if the next non-whitespace token is a pp directive
    lexer_type it = iter_ctx->first;

    if (!impl::next_token_is_pp_directive(ctx, it, iter_ctx->last)) {
        // skip null pp directive (no need to do it via the parser)
        if (it != iter_ctx->last && T_POUND == BASE_TOKEN(token_id(*it))) {
            if (impl::pp_is_last_on_line(ctx, it, iter_ctx->last)) {
                // start over with the next line
                seen_newline = true;
                iter_ctx->first = it;
                return true;
            }
            else if (ctx.get_if_block_status()) {
                // report invalid pp directive
                impl::skip_to_eol(ctx, it, iter_ctx->last);
                seen_newline = true;

                string_type str(boost::wave::util::impl::as_string<string_type>(
                    iter_ctx->first, it));

                token_sequence_type faulty_line;

                for (/**/; iter_ctx->first != it; ++iter_ctx->first)
                    faulty_line.push_back(*iter_ctx->first);

                token_sequence_type pending;
                if (ctx.get_hooks().found_unknown_directive(ctx, faulty_line, pending))
                {
                    // if there is some replacement text, insert it into the pending queue
                    if (!pending.empty())
                        pending_queue.splice(pending_queue.begin(), pending);
                    return true;
                }

                // default behavior is to throw an exception
                on_illformed(str);
            }
        }

        // this line does not contain a pp directive, so simply return
        return false;
    }

    // found eof
    if (it == iter_ctx->last)
        return false;

    // ignore/handle all pp directives not related to conditional compilation while
    // if block status is false
    if (handle_pp_directive(it)) {
        // we may skip pp directives only if the current if block status is
        // false or if it was a #include directive we could handle directly
        return true;    //  the pp directive has been handled/skipped
    }

    // found a pp directive, so try to identify it, start with the pp_token
    bool found_eof = false;
    result_type found_directive;
    token_sequence_type found_eoltokens;

    tree_parse_info_type hit = cpp_grammar_type::parse_cpp_grammar(
        it, iter_ctx->last, act_pos, found_eof, found_directive, found_eoltokens);

    if (hit.match) {
        // position the iterator past the matched sequence to allow
        // resynchronization, if an error occurs
        iter_ctx->first = hit.stop;
        seen_newline = true;
        must_emit_line_directive = true;

        // found a valid pp directive, dispatch to the correct function to handle
        // the found pp directive
        bool result = dispatch_directive(hit, found_directive, found_eoltokens);

        if (found_eof && !need_single_line(ctx.get_language()) &&
            !need_no_newline_at_end_of_file(ctx.get_language()))
        {
            // The line was terminated with an end of file token.
            // So trigger a warning, that the last line was not terminated with a
            // newline.
            BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                last_line_not_terminated, "", act_pos);
        }
        return result;
    }
    else if (token_id(found_directive) != T_EOF) {
        // recognized invalid directive
        impl::skip_to_eol(ctx, it, iter_ctx->last);
        seen_newline = true;

        string_type str(boost::wave::util::impl::as_string<string_type>(
            iter_ctx->first, it));
        iter_ctx->first = it;

        // report the ill formed directive
        on_illformed(str);
    }
    return false;
}

///////////////////////////////////////////////////////////////////////////////
//
//  dispatch_directive(): dispatch a recognized preprocessor directive
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::dispatch_directive(
    tree_parse_info_type const &hit, result_type const& found_directive,
    token_sequence_type const& found_eoltokens)
{
    using namespace cpplexer;

    typedef typename parse_tree_type::const_iterator const_child_iterator_t;

    // this iterator points to the root node of the parse tree
    const_child_iterator_t begin = hit.trees.begin();

    // decide, which preprocessor directive was found
    parse_tree_type const& root = (*begin).children;
    parse_node_value_type const& nodeval = get_first_leaf(*root.begin()).value;
    //long node_id = nodeval.id().to_long();

    const_child_iterator_t begin_child_it = (*root.begin()).children.begin();
    const_child_iterator_t end_child_it = (*root.begin()).children.end();

    token_id id = token_id(found_directive);

    // call preprocessing hook
    if (impl::call_found_directive_hook(ctx, found_directive))
        return true;    // skip this directive and return newline only

    switch (id) {
//     case T_PP_QHEADER:      // #include "..."
// #if BOOST_WAVE_SUPPORT_INCLUDE_NEXT != 0
//     case T_PP_QHEADER_NEXT: // #include_next "..."
// #endif
//         on_include ((*nodeval.begin()).get_value(), false,
//             T_PP_QHEADER_NEXT == id);
//         break;

//     case T_PP_HHEADER:      // #include <...>
// #if BOOST_WAVE_SUPPORT_INCLUDE_NEXT != 0
//     case T_PP_HHEADER_NEXT: // #include_next <...>
// #endif
//         on_include ((*nodeval.begin()).get_value(), true,
//             T_PP_HHEADER_NEXT == id);
//         break;

    case T_PP_INCLUDE:      // #include ...
#if BOOST_WAVE_SUPPORT_INCLUDE_NEXT != 0
    case T_PP_INCLUDE_NEXT: // #include_next ...
#endif
        on_include (begin_child_it, end_child_it, T_PP_INCLUDE_NEXT == id);
        break;

    case T_PP_DEFINE:       // #define
        on_define (*begin);
        break;

//     case T_PP_UNDEF:        // #undef
//         on_undefine(*nodeval.begin());
//         break;
//
    case T_PP_IFDEF:        // #ifdef
        on_ifdef(found_directive, begin_child_it, end_child_it);
        break;

    case T_PP_IFNDEF:       // #ifndef
        on_ifndef(found_directive, begin_child_it, end_child_it);
        break;

    case T_PP_IF:           // #if
        on_if(found_directive, begin_child_it, end_child_it);
        break;

    case T_PP_ELIF:         // #elif
        on_elif(found_directive, begin_child_it, end_child_it);
        break;

//     case T_PP_ELSE:         // #else
//         on_else();
//         break;

//     case T_PP_ENDIF:        // #endif
//         on_endif();
//         break;

    case T_PP_LINE:         // #line
        on_line(begin_child_it, end_child_it);
        break;

    case T_PP_ERROR:        // #error
        on_error(begin_child_it, end_child_it);
        break;

#if BOOST_WAVE_SUPPORT_WARNING_DIRECTIVE != 0
    case T_PP_WARNING:      // #warning
        on_warning(begin_child_it, end_child_it);
        break;
#endif

    case T_PP_PRAGMA:       // #pragma
        return on_pragma(begin_child_it, end_child_it);

#if BOOST_WAVE_SUPPORT_MS_EXTENSIONS != 0
    case T_MSEXT_PP_REGION:
    case T_MSEXT_PP_ENDREGION:
        break;              // ignore these
#endif

    default:                // #something else
        on_illformed((*nodeval.begin()).get_value());

        // if we end up here, we have been instructed to ignore the error, so
        // we simply copy the whole construct to the output
        {
            token_sequence_type expanded;
            get_token_value<result_type, parse_node_type> get_value;

            std::copy(make_ref_transform_iterator(begin_child_it, get_value),
                make_ref_transform_iterator(end_child_it, get_value),
                std::inserter(expanded, expanded.end()));
            pending_queue.splice(pending_queue.begin(), expanded);
        }
        break;
    }

    // properly skip trailing newline for all directives
    typename token_sequence_type::const_iterator eol = found_eoltokens.begin();
    impl::skip_to_eol(ctx, eol, found_eoltokens.end());
    return true;    // return newline only
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_include: handle #include <...> or #include "..." directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_include (string_type const &s,
    bool is_system, bool include_next)
{
    BOOST_ASSERT(ctx.get_if_block_status());

// strip quotes first, extract filename
typename string_type::size_type pos_end = s.find_last_of(is_system ? '>' : '\"');

    if (string_type::npos == pos_end) {
        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_include_statement,
            s.c_str(), act_pos);
        return;
    }

typename string_type::size_type pos_begin =
    s.find_last_of(is_system ? '<' : '\"', pos_end-1);

    if (string_type::npos == pos_begin) {
        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_include_statement,
            s.c_str(), act_pos);
        return;
    }

    std::string file_token(s.substr(pos_begin, pos_end - pos_begin + 1).c_str());
    std::string file_path(s.substr(pos_begin + 1, pos_end - pos_begin - 1).c_str());

    // finally include the file
    on_include_helper(file_token.c_str(), file_path.c_str(), is_system,
        include_next);
}

template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::on_include_helper(char const* f, char const* s,
    bool is_system, bool include_next)
{
    namespace fs = boost::filesystem;

    // try to locate the given file, searching through the include path lists
    std::string file_path(s);
    std::string dir_path;
#if BOOST_WAVE_SUPPORT_INCLUDE_NEXT != 0
    char const* current_name = include_next ? iter_ctx->real_filename.c_str() : 0;
#else
    char const* current_name = 0; // never try to match current file name
#endif

// call the 'found_include_directive' hook function
    if (ctx.get_hooks().found_include_directive(ctx.derived(), f, include_next))
        return true;    // client returned false: skip file to include

    file_path = util::impl::unescape_lit(file_path);
    std::string native_path_str;

    if (!ctx.get_hooks().locate_include_file(ctx, file_path, is_system,
            current_name, dir_path, native_path_str))
    {
        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_include_file,
            file_path.c_str(), act_pos);
        return false;
    }

// test, if this file is known through a #pragma once directive
#if BOOST_WAVE_SUPPORT_PRAGMA_ONCE != 0
    if (!ctx.has_pragma_once(native_path_str))
#endif
    {
        // the new include file determines the actual current directory
        ctx.set_current_directory(native_path_str.c_str());

        // preprocess the opened file
        boost::shared_ptr<base_iteration_context_type> new_iter_ctx(
            new iteration_context_type(ctx, native_path_str.c_str(), act_pos,
                boost::wave::enable_prefer_pp_numbers(ctx.get_language()),
                is_system ? base_iteration_context_type::system_header :
                            base_iteration_context_type::user_header));

        // call the include policy trace function
        ctx.get_hooks().opened_include_file(ctx.derived(), dir_path, file_path,
            is_system);

        // store current file position
        iter_ctx->real_relative_filename = ctx.get_current_relative_filename().c_str();
        iter_ctx->filename = act_pos.get_file();
        iter_ctx->line = act_pos.get_line();
        iter_ctx->if_block_depth = ctx.get_if_block_depth();
        iter_ctx->emitted_lines = (unsigned int)(-1);   // force #line directive

        // push the old iteration context onto the stack and continue with the new
        ctx.push_iteration_context(act_pos, iter_ctx);
        iter_ctx = new_iter_ctx;
        seen_newline = true;        // fake a newline to trigger pp_directive
        must_emit_line_directive = true;

        act_pos.set_file(iter_ctx->filename);  // initialize file position
#if BOOST_WAVE_SUPPORT_PRAGMA_ONCE != 0
        fs::path rfp(wave::util::create_path(iter_ctx->real_filename.c_str()));
        std::string real_filename(rfp.string());
        ctx.set_current_filename(real_filename.c_str());
#endif

        ctx.set_current_relative_filename(dir_path.c_str());
        iter_ctx->real_relative_filename = dir_path.c_str();

        act_pos.set_line(iter_ctx->line);
        act_pos.set_column(0);
    }
    return true;
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_include(): handle #include ... directives
//
///////////////////////////////////////////////////////////////////////////////

template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_include(
    typename parse_tree_type::const_iterator const &begin,
    typename parse_tree_type::const_iterator const &end, bool include_next)
{
    BOOST_ASSERT(ctx.get_if_block_status());

    // preprocess the given token sequence (the body of the #include directive)
    get_token_value<result_type, parse_node_type> get_value;
    token_sequence_type expanded;
    token_sequence_type toexpand;

    std::copy(make_ref_transform_iterator(begin, get_value),
        make_ref_transform_iterator(end, get_value),
        std::inserter(toexpand, toexpand.end()));

    typename token_sequence_type::iterator begin2 = toexpand.begin();
    // expanding the computed include
    ctx.expand_whole_tokensequence(begin2, toexpand.end(), expanded,
                                   false, false);

    // now, include the file
    using namespace boost::wave::util::impl;
    string_type s (trim_whitespace(as_string(expanded)));
    bool is_system = '<' == s[0] && '>' == s[s.size()-1];

    if (!is_system && !('\"' == s[0] && '\"' == s[s.size()-1])) {
    // should resolve into something like <...> or "..."
        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, bad_include_statement,
            s.c_str(), act_pos);
        return;
    }
    on_include(s, is_system, include_next);
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_define(): handle #define directives
//
///////////////////////////////////////////////////////////////////////////////

template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_define (parse_node_type const &node)
{
    BOOST_ASSERT(ctx.get_if_block_status());

    // retrieve the macro definition from the parse tree
    result_type macroname;
    std::vector<result_type> macroparameters;
    token_sequence_type macrodefinition;
    bool has_parameters = false;
    position_type pos(act_token.get_position());

    if (!boost::wave::util::retrieve_macroname(ctx, node,
            BOOST_WAVE_PLAIN_DEFINE_ID, macroname, pos, false))
        return;
    has_parameters = boost::wave::util::retrieve_macrodefinition(node,
        BOOST_WAVE_MACRO_PARAMETERS_ID, macroparameters, pos, false);
    boost::wave::util::retrieve_macrodefinition(node,
        BOOST_WAVE_MACRO_DEFINITION_ID, macrodefinition, pos, false);

    if (has_parameters) {
#if BOOST_WAVE_SUPPORT_VARIADICS_PLACEMARKERS != 0
        if (boost::wave::need_variadics(ctx.get_language())) {
            // test whether ellipsis are given, and if yes, if these are placed as the
            // last argument, test if __VA_ARGS__ is used as a macro parameter name
            using namespace cpplexer;
            typedef typename std::vector<result_type>::iterator
                parameter_iterator_t;

            bool seen_ellipses = false;
            parameter_iterator_t end = macroparameters.end();
            for (parameter_iterator_t pit = macroparameters.begin();
                pit != end; ++pit)
            {
                if (seen_ellipses) {
                    // ellipses are not the last given formal argument
                    BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                        bad_define_statement, macroname.get_value().c_str(),
                        (*pit).get_position());
                    return;
                }
                if (T_ELLIPSIS == token_id(*pit))
                    seen_ellipses = true;

                // can't use __VA_ARGS__ as a argument name
                if ("__VA_ARGS__" == (*pit).get_value()) {
                    BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                        bad_define_statement_va_args,
                        macroname.get_value().c_str(), (*pit).get_position());
                    return;
                }

#if BOOST_WAVE_SUPPORT_VA_OPT != 0
                // can't use __VA_OPT__ either
                if (boost::wave::need_va_opt(ctx.get_language()) &&
                    ("__VA_OPT__" == (*pit).get_value())) {
                    BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                        bad_define_statement_va_opt,
                        macroname.get_value().c_str(), (*pit).get_position());
                    return;
                }
#endif
            }

            // if there wasn't an ellipsis, then there shouldn't be a __VA_ARGS__
            // placeholder in the definition too [C99 Standard 6.10.3.5]
            if (!seen_ellipses) {
                typedef typename token_sequence_type::iterator definition_iterator_t;

                bool seen_va_args = false;
#if BOOST_WAVE_SUPPORT_VA_OPT != 0
                bool seen_va_opt = false;
#endif
                definition_iterator_t pend = macrodefinition.end();
                for (definition_iterator_t dit = macrodefinition.begin();
                     dit != pend; ++dit)
                {
                    if (T_IDENTIFIER == token_id(*dit) &&
                        "__VA_ARGS__" == (*dit).get_value())
                    {
                        seen_va_args = true;
                    }
#if BOOST_WAVE_SUPPORT_VA_OPT != 0
                    if (T_IDENTIFIER == token_id(*dit) &&
                        "__VA_OPT__" == (*dit).get_value())
                    {
                        seen_va_opt = true;
                    }
#endif
                }
                if (seen_va_args) {
                    // must not have seen __VA_ARGS__ placeholder
                    BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                        bad_define_statement_va_args,
                        macroname.get_value().c_str(), act_token.get_position());
                    return;
                }
#if BOOST_WAVE_SUPPORT_VA_OPT != 0
                if (seen_va_opt) {
                    BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                        bad_define_statement_va_opt,
                        macroname.get_value().c_str(), act_token.get_position());
                    return;
                }
#endif
            }
        }
        else
#endif // BOOST_WAVE_SUPPORT_VARIADICS_PLACEMARKERS != 0
        {
            // test, that there is no T_ELLIPSES given
            using namespace cpplexer;
            typedef typename std::vector<result_type>::iterator
                parameter_iterator_t;

            parameter_iterator_t end = macroparameters.end();
            for (parameter_iterator_t pit = macroparameters.begin();
                pit != end; ++pit)
            {
                if (T_ELLIPSIS == token_id(*pit)) {
                    // if variadics are disabled, no ellipses should be given
                    BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                        bad_define_statement, macroname.get_value().c_str(),
                        (*pit).get_position());
                    return;
                }
            }
        }
    }

    // add the new macro to the macromap
    ctx.add_macro_definition(macroname, has_parameters, macroparameters,
        macrodefinition);
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_undefine(): handle #undef directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_undefine (lexer_type const &it)
{
    BOOST_ASSERT(ctx.get_if_block_status());

    // retrieve the macro name to undefine from the parse tree
    ctx.remove_macro_definition((*it).get_value()); // throws for predefined macros
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_ifdef(): handle #ifdef directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_ifdef(
    result_type const& found_directive,
    typename parse_tree_type::const_iterator const &begin,
    typename parse_tree_type::const_iterator const &end)
{
    get_token_value<result_type, parse_node_type> get_value;
    token_sequence_type toexpand;

    std::copy(make_ref_transform_iterator((*begin).children.begin(), get_value),
              make_ref_transform_iterator((*begin).children.end(), get_value),
              std::inserter(toexpand, toexpand.end()));

    bool is_defined = false;

    do {
        is_defined = ctx.is_defined_macro(toexpand.begin(), toexpand.end());
    } while (ctx.get_hooks().evaluated_conditional_expression(ctx.derived(),
             found_directive, toexpand, is_defined));
    ctx.enter_if_block(is_defined);
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_ifndef(): handle #ifndef directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_ifndef(
    result_type const& found_directive,
    typename parse_tree_type::const_iterator const &begin,
    typename parse_tree_type::const_iterator const &end)
{
    get_token_value<result_type, parse_node_type> get_value;
    token_sequence_type toexpand;

    std::copy(make_ref_transform_iterator((*begin).children.begin(), get_value),
              make_ref_transform_iterator((*begin).children.end(), get_value),
              std::inserter(toexpand, toexpand.end()));

    bool is_defined = false;

    do {
        is_defined = ctx.is_defined_macro(toexpand.begin(), toexpand.end());
    } while (ctx.get_hooks().evaluated_conditional_expression(ctx.derived(),
             found_directive, toexpand, is_defined));
    ctx.enter_if_block(!is_defined);
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_else(): handle #else directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_else()
{
    if (!ctx.enter_else_block()) {
        // #else without matching #if
        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, missing_matching_if,
            "#else", act_pos);
    }
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_endif(): handle #endif directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_endif()
{
    if (!ctx.exit_if_block()) {
        // #endif without matching #if
        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, missing_matching_if,
            "#endif", act_pos);
    }
}

///////////////////////////////////////////////////////////////////////////////
//  replace all remaining (== undefined) identifiers with an integer literal '0'
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::replace_undefined_identifiers(
    token_sequence_type &expanded)
{
    typename token_sequence_type::iterator exp_end = expanded.end();
    for (typename token_sequence_type::iterator exp_it = expanded.begin();
         exp_it != exp_end; ++exp_it)
    {
        using namespace boost::wave;

        token_id id = token_id(*exp_it);
        if (IS_CATEGORY(id, IdentifierTokenType) ||
            IS_CATEGORY(id, KeywordTokenType))
        {
            (*exp_it).set_token_id(T_INTLIT);
            (*exp_it).set_value("0");
        }
    }
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_if(): handle #if directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_if(
    result_type const& found_directive,
    typename parse_tree_type::const_iterator const &begin,
    typename parse_tree_type::const_iterator const &end)
{
    // preprocess the given sequence into the provided list
    get_token_value<result_type, parse_node_type> get_value;
    token_sequence_type toexpand;

    std::copy(make_ref_transform_iterator(begin, get_value),
        make_ref_transform_iterator(end, get_value),
        std::inserter(toexpand, toexpand.end()));

    impl::remove_leading_whitespace(ctx, toexpand);

    bool if_status = false;
    grammars::value_error status = grammars::error_noerror;
    token_sequence_type expanded;

    do {
        expanded.clear();

        typename token_sequence_type::iterator begin2 = toexpand.begin();
        ctx.expand_whole_tokensequence(begin2, toexpand.end(), expanded);

        // replace all remaining (== undefined) identifiers with an integer literal '0'
        replace_undefined_identifiers(expanded);

#if BOOST_WAVE_DUMP_CONDITIONAL_EXPRESSIONS != 0
        {
            string_type outstr(boost::wave::util::impl::as_string(toexpand));
            outstr += "(" + boost::wave::util::impl::as_string(expanded) + ")";
            BOOST_WAVE_DUMP_CONDITIONAL_EXPRESSIONS_OUT << "#if " << outstr
                << std::endl;
        }
#endif
        try {
            // parse the expression and enter the #if block
            if_status = grammars::expression_grammar_gen<result_type>::
                    evaluate(expanded.begin(), expanded.end(), act_pos,
                        ctx.get_if_block_status(), status);
        }
        catch (boost::wave::preprocess_exception const& e) {
            // any errors occurred have to be dispatched to the context hooks
            ctx.get_hooks().throw_exception(ctx.derived(), e);
            break;
        }

    } while (ctx.get_hooks().evaluated_conditional_expression(ctx.derived(),
                found_directive, toexpand, if_status)
             && status == grammars::error_noerror);

    ctx.enter_if_block(if_status);
    if (grammars::error_noerror != status) {
        // division or other error by zero occurred
        string_type expression = util::impl::as_string(expanded);
        if (0 == expression.size())
            expression = "<empty expression>";

        if (grammars::error_division_by_zero & status) {
            BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, division_by_zero,
                expression.c_str(), act_pos);
        }
        else if (grammars::error_integer_overflow & status) {
            BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, integer_overflow,
                expression.c_str(), act_pos);
        }
        else if (grammars::error_character_overflow & status) {
            BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                character_literal_out_of_range, expression.c_str(), act_pos);
        }
    }
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_elif(): handle #elif directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_elif(
    result_type const& found_directive,
    typename parse_tree_type::const_iterator const &begin,
    typename parse_tree_type::const_iterator const &end)
{
    // preprocess the given sequence into the provided list
    get_token_value<result_type, parse_node_type> get_value;
    token_sequence_type toexpand;

    std::copy(make_ref_transform_iterator(begin, get_value),
        make_ref_transform_iterator(end, get_value),
        std::inserter(toexpand, toexpand.end()));

    impl::remove_leading_whitespace(ctx, toexpand);

    // check current if block status
    if (ctx.get_if_block_some_part_status()) {
        if (!ctx.enter_elif_block(false)) {
            // #else without matching #if
            BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                missing_matching_if, "#elif", act_pos);
            // fall through...
        }

        // skip all the expression and the trailing whitespace
        typename token_sequence_type::iterator begin2 = toexpand.begin();

        impl::skip_to_eol(ctx, begin2, toexpand.end());
        return;     // one of previous #if/#elif was true, so don't enter this #elif
    }

    // preprocess the given sequence into the provided list
    bool if_status = false;
    grammars::value_error status = grammars::error_noerror;
    token_sequence_type expanded;

    do {
        expanded.clear();

        typename token_sequence_type::iterator begin2 = toexpand.begin();
        ctx.expand_whole_tokensequence(begin2, toexpand.end(), expanded);

        // replace all remaining (== undefined) identifiers with an integer literal '0'
        replace_undefined_identifiers(expanded);

#if BOOST_WAVE_DUMP_CONDITIONAL_EXPRESSIONS != 0
        {
            string_type outstr(boost::wave::util::impl::as_string(toexpand));
            outstr += "(" + boost::wave::util::impl::as_string(expanded) + ")";
            BOOST_WAVE_DUMP_CONDITIONAL_EXPRESSIONS_OUT << "#elif " << outstr << std::endl;
        }
#endif

        try {
            // parse the expression and enter the #elif block
            if_status = grammars::expression_grammar_gen<result_type>::
                evaluate(expanded.begin(), expanded.end(), act_pos,
                    ctx.get_if_block_status(), status);
        }
        catch (boost::wave::preprocess_exception const& e) {
            // any errors occurred have to be dispatched to the context hooks
            ctx.get_hooks().throw_exception(ctx.derived(), e);
        }

    } while (ctx.get_hooks().evaluated_conditional_expression(ctx.derived(),
                found_directive, toexpand, if_status)
             && status == grammars::error_noerror);

    if (!ctx.enter_elif_block(if_status)) {
        // #elif without matching #if
        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, missing_matching_if,
            "#elif", act_pos);
        return;
    }

    if (grammars::error_noerror != status) {
        // division or other error by zero occurred
        string_type expression = util::impl::as_string(expanded);
        if (0 == expression.size())
            expression = "<empty expression>";

        if (grammars::error_division_by_zero & status) {
            BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, division_by_zero,
                expression.c_str(), act_pos);
        }
        else if (grammars::error_integer_overflow & status) {
            BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                integer_overflow, expression.c_str(), act_pos);
        }
        else if (grammars::error_character_overflow & status) {
            BOOST_WAVE_THROW_CTX(ctx, preprocess_exception,
                character_literal_out_of_range, expression.c_str(), act_pos);
        }
    }
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_illformed(): handles the illegal directive
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_illformed(
    typename result_type::string_type s)
{
    BOOST_ASSERT(ctx.get_if_block_status());

    // some messages have more than one newline at the end
    typename string_type::size_type p = s.find_last_not_of('\n');
    if (string_type::npos != p)
        s = s.substr(0, p+1);

    // throw the exception
    BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, ill_formed_directive,
        s.c_str(), act_pos);
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_line(): handle #line directives
//
///////////////////////////////////////////////////////////////////////////////

namespace impl {

    template <typename IteratorT, typename StringT>
    bool retrieve_line_info (IteratorT first, IteratorT const &last,
        unsigned int &line, StringT &file,
        boost::wave::preprocess_exception::error_code& error)
    {
        using namespace boost::wave;
        token_id id = token_id(*first);
        if (T_PP_NUMBER == id || T_INTLIT == id) {
        // extract line number
            using namespace std;    // some systems have atoi in namespace std
            line = (unsigned int)atoi((*first).get_value().c_str());
            if (0 == line)
                error = preprocess_exception::bad_line_number;

        // re-extract line number with spirit to diagnose overflow
            using namespace boost::spirit::classic;
            if (!parse((*first).get_value().c_str(), int_p).full)
                error = preprocess_exception::bad_line_number;

        // extract file name (if it is given)
            while (++first != last && IS_CATEGORY(*first, WhiteSpaceTokenType))
                /**/;   // skip whitespace

            if (first != last) {
                if (T_STRINGLIT != token_id(*first)) {
                    error = preprocess_exception::bad_line_filename;
                    return false;
                }

                StringT const& file_lit = (*first).get_value();

                if ('L' == file_lit[0]) {
                    error = preprocess_exception::bad_line_filename;
                    return false;       // shouldn't be a wide character string
                }

                file = file_lit.substr(1, file_lit.size()-2);

            // test if there is other junk on this line
                while (++first != last && IS_CATEGORY(*first, WhiteSpaceTokenType))
                    /**/;   // skip whitespace
            }
            return first == last;
        }
        error = preprocess_exception::bad_line_statement;
        return false;
    }
}

template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_line(
    typename parse_tree_type::const_iterator const &begin,
    typename parse_tree_type::const_iterator const &end)
{
    BOOST_ASSERT(ctx.get_if_block_status());

    // Try to extract the line number and file name from the given token list
    // directly. If that fails, preprocess the whole token sequence and try again
    // to extract this information.
    token_sequence_type expanded;
    get_token_value<result_type, parse_node_type> get_value;

    typedef typename ref_transform_iterator_generator<
            get_token_value<result_type, parse_node_type>,
            typename parse_tree_type::const_iterator
        >::type const_tree_iterator_t;

    const_tree_iterator_t first = make_ref_transform_iterator(begin, get_value);
    const_tree_iterator_t last = make_ref_transform_iterator(end, get_value);

    // try to interpret the #line body as a number followed by an optional
    // string literal
    unsigned int line = 0;
    preprocess_exception::error_code error = preprocess_exception::no_error;
    string_type file_name;
    token_sequence_type toexpand;

    std::copy(first, last, std::inserter(toexpand, toexpand.end()));
    if (!impl::retrieve_line_info(first, last, line, file_name, error)) {
        // preprocess the body of this #line message
        typename token_sequence_type::iterator begin2 = toexpand.begin();
        ctx.expand_whole_tokensequence(begin2, toexpand.end(),
                                       expanded, false, false);

        error = preprocess_exception::no_error;
        if (!impl::retrieve_line_info(expanded.begin(), expanded.end(),
            line, file_name, error))
        {
            typename ContextT::string_type msg(
                boost::wave::util::impl::as_string(expanded));
            BOOST_WAVE_THROW_VAR_CTX(ctx, preprocess_exception, error,
                msg.c_str(), act_pos);
            return;
        }

        // call the corresponding pp hook function
        ctx.get_hooks().found_line_directive(ctx.derived(), expanded, line,
            file_name.c_str());
    }
    else {
        // call the corresponding pp hook function
        ctx.get_hooks().found_line_directive(ctx.derived(), toexpand, line,
            file_name.c_str());
    }

    // the queues should be empty at this point
    BOOST_ASSERT(unput_queue.empty());
    BOOST_ASSERT(pending_queue.empty());

    // make sure error recovery starts on the next line
    must_emit_line_directive = true;

    // diagnose possible error in detected line directive
    if (error != preprocess_exception::no_error) {
        typename ContextT::string_type msg(
            boost::wave::util::impl::as_string(expanded));
        BOOST_WAVE_THROW_VAR_CTX(ctx, preprocess_exception, error,
            msg.c_str(), act_pos);
        return;
    }

    // set new line number/filename only if ok
    if (!file_name.empty()) {    // reuse current file name
        using boost::wave::util::impl::unescape_lit;
        act_pos.set_file(unescape_lit(file_name).c_str());
    }
    act_pos.set_line(line);
    if (iter_ctx->first != iter_ctx->last)
    {
      iter_ctx->first.set_position(act_pos);
    }
}

///////////////////////////////////////////////////////////////////////////////
//
//  on_error(): handle #error directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_error(
    typename parse_tree_type::const_iterator const &begin,
    typename parse_tree_type::const_iterator const &end)
{
    BOOST_ASSERT(ctx.get_if_block_status());

    // preprocess the given sequence into the provided list
    token_sequence_type expanded;
    get_token_value<result_type, parse_node_type> get_value;

    typename ref_transform_iterator_generator<
        get_token_value<result_type, parse_node_type>,
        typename parse_tree_type::const_iterator
    >::type first = make_ref_transform_iterator(begin, get_value);

#if BOOST_WAVE_PREPROCESS_ERROR_MESSAGE_BODY != 0
    // preprocess the body of this #error message
    token_sequence_type toexpand;

    std::copy(first, make_ref_transform_iterator(end, get_value),
        std::inserter(toexpand, toexpand.end()));

    typename token_sequence_type::iterator begin2 = toexpand.begin();
    ctx.expand_whole_tokensequence(begin2, toexpand.end(), expanded,
                                   false, false);
    if (!ctx.get_hooks().found_error_directive(ctx.derived(), toexpand))
#else
    // simply copy the body of this #error message to the issued diagnostic
    // message
    std::copy(first, make_ref_transform_iterator(end, get_value),
        std::inserter(expanded, expanded.end()));
    if (!ctx.get_hooks().found_error_directive(ctx.derived(), expanded))
#endif
    {
        // report the corresponding error
        BOOST_WAVE_STRINGTYPE msg(boost::wave::util::impl::as_string(expanded));
        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, error_directive,
            msg.c_str(), act_pos);
    }
}

#if BOOST_WAVE_SUPPORT_WARNING_DIRECTIVE != 0
///////////////////////////////////////////////////////////////////////////////
//
//  on_warning(): handle #warning directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline void
pp_iterator_functor<ContextT>::on_warning(
    typename parse_tree_type::const_iterator const &begin,
    typename parse_tree_type::const_iterator const &end)
{
    BOOST_ASSERT(ctx.get_if_block_status());

    // preprocess the given sequence into the provided list
    token_sequence_type expanded;
    get_token_value<result_type, parse_node_type> get_value;

    typename ref_transform_iterator_generator<
        get_token_value<result_type, parse_node_type>,
        typename parse_tree_type::const_iterator
    >::type first = make_ref_transform_iterator(begin, get_value);

#if BOOST_WAVE_PREPROCESS_ERROR_MESSAGE_BODY != 0
    // preprocess the body of this #warning message
    token_sequence_type toexpand;

    std::copy(first, make_ref_transform_iterator(end, get_value),
        std::inserter(toexpand, toexpand.end()));

    typename token_sequence_type::iterator begin2 = toexpand.begin();
    ctx.expand_whole_tokensequence(begin2, toexpand.end(), expanded,
                                   false, false);
    if (!ctx.get_hooks().found_warning_directive(ctx.derived(), toexpand))
#else
    // simply copy the body of this #warning message to the issued diagnostic
    // message
    std::copy(first, make_ref_transform_iterator(end, get_value),
        std::inserter(expanded, expanded.end()));
    if (!ctx.get_hooks().found_warning_directive(ctx.derived(), expanded))
#endif
    {
        // report the corresponding error
        BOOST_WAVE_STRINGTYPE msg(boost::wave::util::impl::as_string(expanded));
        BOOST_WAVE_THROW_CTX(ctx, preprocess_exception, warning_directive,
            msg.c_str(), act_pos);
    }
}
#endif // BOOST_WAVE_SUPPORT_WARNING_DIRECTIVE != 0

///////////////////////////////////////////////////////////////////////////////
//
//  on_pragma(): handle #pragma directives
//
///////////////////////////////////////////////////////////////////////////////
template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::on_pragma(
    typename parse_tree_type::const_iterator const &begin,
    typename parse_tree_type::const_iterator const &end)
{
    using namespace boost::wave;

    BOOST_ASSERT(ctx.get_if_block_status());

    // Look at the pragma token sequence and decide, if the first token is STDC
    // (see C99 standard [6.10.6.2]), if it is, the sequence must _not_ be
    // preprocessed.
    token_sequence_type expanded;
    get_token_value<result_type, parse_node_type> get_value;

    typedef typename ref_transform_iterator_generator<
            get_token_value<result_type, parse_node_type>,
            typename parse_tree_type::const_iterator
        >::type const_tree_iterator_t;

    const_tree_iterator_t first = make_ref_transform_iterator(begin, get_value);
    const_tree_iterator_t last = make_ref_transform_iterator(end, get_value);

    expanded.push_back(result_type(T_PP_PRAGMA, "#pragma", act_token.get_position()));

    while (first != last && IS_CATEGORY(*first, WhiteSpaceTokenType))
        expanded.push_back(*first++);   // skip whitespace

    if (first != last) {
        if (T_IDENTIFIER == token_id(*first) &&
            boost::wave::need_c99(ctx.get_language()) &&
            (*first).get_value() == "STDC")
        {
        // do _not_ preprocess the token sequence
            std::copy(first, last, std::inserter(expanded, expanded.end()));
        }
        else {
#if BOOST_WAVE_PREPROCESS_PRAGMA_BODY != 0
            // preprocess the given tokensequence
            token_sequence_type toexpand;

            std::copy(first, last, std::inserter(toexpand, toexpand.end()));

            typename token_sequence_type::iterator begin2 = toexpand.begin();
            ctx.expand_whole_tokensequence(begin2, toexpand.end(),
                                           expanded, false, false);
#else
            // do _not_ preprocess the token sequence
            std::copy(first, last, std::inserter(expanded, expanded.end()));
#endif
        }
    }

    // the queues should be empty at this point
    BOOST_ASSERT(unput_queue.empty());
    BOOST_ASSERT(pending_queue.empty());

    // try to interpret the expanded #pragma body
    token_sequence_type pending;
    if (interpret_pragma(expanded, pending)) {
        // if there is some replacement text, insert it into the pending queue
        if (!pending.empty())
            pending_queue.splice(pending_queue.begin(), pending);
        return true;        // this #pragma was successfully recognized
    }

#if BOOST_WAVE_EMIT_PRAGMA_DIRECTIVES != 0
    // Move the resulting token sequence into the pending_queue, so it will be
    // returned to the caller.
    if (boost::wave::need_emit_pragma_directives(ctx.get_language())) {
        pending_queue.splice(pending_queue.begin(), expanded);
        return false;       // return the whole #pragma directive
    }
#endif
    return true;            // skip the #pragma at all
}

template <typename ContextT>
inline bool
pp_iterator_functor<ContextT>::interpret_pragma(
    token_sequence_type const &pragma_body, token_sequence_type &result)
{
    using namespace cpplexer;

    typename token_sequence_type::const_iterator end = pragma_body.end();
    typename token_sequence_type::const_iterator it = pragma_body.begin();
    for (++it; it != end && IS_CATEGORY(*it, WhiteSpaceTokenType); ++it)
        /**/;   // skip whitespace

    if (it == end)      // eof reached
        return false;

    return boost::wave::util::interpret_pragma(
        ctx.derived(), act_token, it, end, result);
}

///////////////////////////////////////////////////////////////////////////////
}   // namespace impl

///////////////////////////////////////////////////////////////////////////////
//
//  pp_iterator
//
//      The boost::wave::pp_iterator template is the iterator, through which
//      the resulting preprocessed input stream is accessible.
//
///////////////////////////////////////////////////////////////////////////////

template <typename ContextT>
class pp_iterator
:   public boost::spirit::classic::multi_pass<
        boost::wave::impl::pp_iterator_functor<ContextT>,
        boost::wave::util::functor_input
    >
{
public:
    typedef boost::wave::impl::pp_iterator_functor<ContextT> input_policy_type;

private:
    typedef
        boost::spirit::classic::multi_pass<input_policy_type, boost::wave::util::functor_input>
        base_type;
    typedef pp_iterator<ContextT> self_type;
    typedef boost::wave::util::functor_input functor_input_type;

public:
    pp_iterator()
    {}

    template <typename IteratorT>
    pp_iterator(ContextT &ctx, IteratorT const &first, IteratorT const &last,
        typename ContextT::position_type const &pos)
    :   base_type(input_policy_type(ctx, first, last, pos))
    {}

    bool force_include(char const *path_, bool is_last)
    {
        bool result = this->get_functor().on_include_helper(path_, path_,
            false, false);
        if (is_last) {
            this->functor_input_type::
                template inner<input_policy_type>::advance_input();
        }
        return result;
    }
};

///////////////////////////////////////////////////////////////////////////////
}   // namespace wave
}   // namespace boost

// the suffix header occurs after all of the code
#ifdef BOOST_HAS_ABI_HEADERS
#include BOOST_ABI_SUFFIX
#endif

#endif // !defined(BOOST_CPP_ITERATOR_HPP_175CA88F_7273_43FA_9039_BCF7459E1F29_INCLUDED)