// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2014-2023. // Modifications copyright (c) 2014-2023 Oracle and/or its affiliates. // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_UNION_HPP #define BOOST_GEOMETRY_ALGORITHMS_UNION_HPP #include <boost/geometry/algorithms/detail/gc_group_elements.hpp> #include <boost/geometry/algorithms/detail/intersection/gc.hpp> #include <boost/geometry/algorithms/detail/overlay/intersection_insert.hpp> #include <boost/geometry/algorithms/detail/overlay/linear_linear.hpp> #include <boost/geometry/algorithms/detail/overlay/overlay.hpp> #include <boost/geometry/algorithms/detail/overlay/pointlike_pointlike.hpp> #include <boost/geometry/algorithms/not_implemented.hpp> #include <boost/geometry/core/point_order.hpp> #include <boost/geometry/core/reverse_dispatch.hpp> #include <boost/geometry/geometries/adapted/boost_variant.hpp> #include <boost/geometry/geometries/concepts/check.hpp> #include <boost/geometry/policies/robustness/get_rescale_policy.hpp> #include <boost/geometry/strategies/default_strategy.hpp> #include <boost/geometry/strategies/detail.hpp> #include <boost/geometry/strategies/relate/cartesian.hpp> #include <boost/geometry/strategies/relate/geographic.hpp> #include <boost/geometry/strategies/relate/spherical.hpp> #include <boost/geometry/util/type_traits_std.hpp> #include <boost/geometry/views/detail/geometry_collection_view.hpp> #include <boost/geometry/views/detail/random_access_view.hpp> namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DISPATCH namespace dispatch { template < typename Geometry1, typename Geometry2, typename GeometryOut, typename TagIn1 = typename tag<Geometry1>::type, typename TagIn2 = typename tag<Geometry2>::type, typename TagOut = typename detail::setop_insert_output_tag<GeometryOut>::type, typename CastedTagIn1 = typename geometry::tag_cast<TagIn1, areal_tag, linear_tag, pointlike_tag>::type, typename CastedTagIn2 = typename geometry::tag_cast<TagIn2, areal_tag, linear_tag, pointlike_tag>::type, typename CastedTagOut = typename geometry::tag_cast<TagOut, areal_tag, linear_tag, pointlike_tag>::type, bool Reverse = geometry::reverse_dispatch<Geometry1, Geometry2>::type::value > struct union_insert: not_implemented<TagIn1, TagIn2, TagOut> {}; // If reversal is needed, perform it first template < typename Geometry1, typename Geometry2, typename GeometryOut, typename TagIn1, typename TagIn2, typename TagOut, typename CastedTagIn1, typename CastedTagIn2, typename CastedTagOut > struct union_insert < Geometry1, Geometry2, GeometryOut, TagIn1, TagIn2, TagOut, CastedTagIn1, CastedTagIn2, CastedTagOut, true > { template <typename RobustPolicy, typename OutputIterator, typename Strategy> static inline OutputIterator apply(Geometry1 const& g1, Geometry2 const& g2, RobustPolicy const& robust_policy, OutputIterator out, Strategy const& strategy) { return union_insert < Geometry2, Geometry1, GeometryOut >::apply(g2, g1, robust_policy, out, strategy); } }; template < typename Geometry1, typename Geometry2, typename GeometryOut, typename TagIn1, typename TagIn2, typename TagOut > struct union_insert < Geometry1, Geometry2, GeometryOut, TagIn1, TagIn2, TagOut, areal_tag, areal_tag, areal_tag, false > : detail::overlay::overlay < Geometry1, Geometry2, detail::overlay::do_reverse<geometry::point_order<Geometry1>::value>::value, detail::overlay::do_reverse<geometry::point_order<Geometry2>::value>::value, detail::overlay::do_reverse<geometry::point_order<GeometryOut>::value>::value, GeometryOut, overlay_union > {}; // dispatch for union of linear geometries template < typename Linear1, typename Linear2, typename LineStringOut, typename TagIn1, typename TagIn2 > struct union_insert < Linear1, Linear2, LineStringOut, TagIn1, TagIn2, linestring_tag, linear_tag, linear_tag, linear_tag, false > : detail::overlay::linear_linear_linestring < Linear1, Linear2, LineStringOut, overlay_union > {}; // dispatch for point-like geometries template < typename PointLike1, typename PointLike2, typename PointOut, typename TagIn1, typename TagIn2 > struct union_insert < PointLike1, PointLike2, PointOut, TagIn1, TagIn2, point_tag, pointlike_tag, pointlike_tag, pointlike_tag, false > : detail::overlay::union_pointlike_pointlike_point < PointLike1, PointLike2, PointOut > {}; template < typename Geometry1, typename Geometry2, typename SingleTupledOut, typename TagIn1, typename TagIn2, typename CastedTagIn > struct union_insert < Geometry1, Geometry2, SingleTupledOut, TagIn1, TagIn2, detail::tupled_output_tag, CastedTagIn, CastedTagIn, detail::tupled_output_tag, false > { using single_tag = typename geometry::detail::single_tag_from_base_tag < CastedTagIn >::type; using expect_check = detail::expect_output < Geometry1, Geometry2, SingleTupledOut, single_tag >; using access = typename geometry::detail::output_geometry_access < SingleTupledOut, single_tag, single_tag >; template <typename RobustPolicy, typename OutputIterator, typename Strategy> static inline OutputIterator apply(Geometry1 const& g1, Geometry2 const& g2, RobustPolicy const& robust_policy, OutputIterator out, Strategy const& strategy) { access::get(out) = union_insert < Geometry2, Geometry1, typename access::type >::apply(g2, g1, robust_policy, access::get(out), strategy); return out; } }; template < typename Geometry1, typename Geometry2, typename SingleTupledOut, typename SingleTag1, typename SingleTag2, bool Geometry1LesserTopoDim = (topological_dimension<Geometry1>::value < topological_dimension<Geometry2>::value) > struct union_insert_tupled_different { using access1 = typename geometry::detail::output_geometry_access < SingleTupledOut, SingleTag1, SingleTag1 >; using access2 = typename geometry::detail::output_geometry_access < SingleTupledOut, SingleTag2, SingleTag2 >; template <typename RobustPolicy, typename OutputIterator, typename Strategy> static inline OutputIterator apply(Geometry1 const& g1, Geometry2 const& g2, RobustPolicy const& robust_policy, OutputIterator out, Strategy const& strategy) { access1::get(out) = geometry::dispatch::intersection_insert < Geometry1, Geometry2, typename access1::type, overlay_difference, geometry::detail::overlay::do_reverse<geometry::point_order<Geometry1>::value>::value, geometry::detail::overlay::do_reverse<geometry::point_order<Geometry2>::value, true>::value >::apply(g1, g2, robust_policy, access1::get(out), strategy); access2::get(out) = geometry::detail::convert_to_output < Geometry2, typename access2::type >::apply(g2, access2::get(out)); return out; } }; template < typename Geometry1, typename Geometry2, typename SingleTupledOut, typename SingleTag1, typename SingleTag2 > struct union_insert_tupled_different < Geometry1, Geometry2, SingleTupledOut, SingleTag1, SingleTag2, false > { template <typename RobustPolicy, typename OutputIterator, typename Strategy> static inline OutputIterator apply(Geometry1 const& g1, Geometry2 const& g2, RobustPolicy const& robust_policy, OutputIterator out, Strategy const& strategy) { return union_insert_tupled_different < Geometry2, Geometry1, SingleTupledOut, SingleTag2, SingleTag1, true >::apply(g2, g1, robust_policy, out, strategy); } }; template < typename Geometry1, typename Geometry2, typename SingleTupledOut, typename TagIn1, typename TagIn2, typename CastedTagIn1, typename CastedTagIn2 > struct union_insert < Geometry1, Geometry2, SingleTupledOut, TagIn1, TagIn2, detail::tupled_output_tag, CastedTagIn1, CastedTagIn2, detail::tupled_output_tag, false > { using single_tag1 = typename geometry::detail::single_tag_from_base_tag < CastedTagIn1 >::type; using expect_check1 = detail::expect_output < Geometry1, Geometry2, SingleTupledOut, single_tag1 >; using single_tag2 = typename geometry::detail::single_tag_from_base_tag < CastedTagIn2 >::type; using expect_check2 = detail::expect_output < Geometry1, Geometry2, SingleTupledOut, single_tag2 >; template <typename RobustPolicy, typename OutputIterator, typename Strategy> static inline OutputIterator apply(Geometry1 const& g1, Geometry2 const& g2, RobustPolicy const& robust_policy, OutputIterator out, Strategy const& strategy) { return union_insert_tupled_different < Geometry1, Geometry2, SingleTupledOut, single_tag1, single_tag2 >::apply(g1, g2, robust_policy, out, strategy); } }; } // namespace dispatch #endif // DOXYGEN_NO_DISPATCH #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace union_ { /*! \brief_calc2{union} \ingroup union \details \details_calc2{union_insert, spatial set theoretic union}. \details_insert{union} \tparam GeometryOut output geometry type, must be specified \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \tparam OutputIterator output iterator \param geometry1 \param_geometry \param geometry2 \param_geometry \param out \param_out{union} \return \return_out */ template < typename GeometryOut, typename Geometry1, typename Geometry2, typename OutputIterator > inline OutputIterator union_insert(Geometry1 const& geometry1, Geometry2 const& geometry2, OutputIterator out) { concepts::check<Geometry1 const>(); concepts::check<Geometry2 const>(); geometry::detail::output_geometry_concept_check<GeometryOut>::apply(); typename strategies::relate::services::default_strategy < Geometry1, Geometry2 >::type strategy; using rescale_policy_type = typename geometry::rescale_overlay_policy_type < Geometry1, Geometry2 >::type; rescale_policy_type robust_policy = geometry::get_rescale_policy<rescale_policy_type>( geometry1, geometry2, strategy); return dispatch::union_insert < Geometry1, Geometry2, GeometryOut >::apply(geometry1, geometry2, robust_policy, out, strategy); } }} // namespace detail::union_ #endif // DOXYGEN_NO_DETAIL namespace resolve_collection { template < typename Geometry1, typename Geometry2, typename GeometryOut, typename Tag1 = typename geometry::tag<Geometry1>::type, typename Tag2 = typename geometry::tag<Geometry2>::type, typename TagOut = typename geometry::tag<GeometryOut>::type > struct union_ { template <typename Strategy> static void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut & geometry_out, Strategy const& strategy) { using single_out = typename geometry::detail::output_geometry_value < GeometryOut >::type; using rescale_policy_type = typename geometry::rescale_overlay_policy_type < Geometry1, Geometry2, typename Strategy::cs_tag >::type; rescale_policy_type robust_policy = geometry::get_rescale_policy<rescale_policy_type>( geometry1, geometry2, strategy); dispatch::union_insert < Geometry1, Geometry2, single_out >::apply(geometry1, geometry2, robust_policy, geometry::detail::output_geometry_back_inserter(geometry_out), strategy); } }; template < typename Geometry1, typename Geometry2, typename GeometryOut > struct union_ < Geometry1, Geometry2, GeometryOut, geometry_collection_tag, geometry_collection_tag, geometry_collection_tag > { // NOTE: for now require all of the possible output types // technically only a subset could be needed. using multi_point_t = typename util::sequence_find_if < typename traits::geometry_types<GeometryOut>::type, util::is_multi_point >::type; using multi_linestring_t = typename util::sequence_find_if < typename traits::geometry_types<GeometryOut>::type, util::is_multi_linestring >::type; using multi_polygon_t = typename util::sequence_find_if < typename traits::geometry_types<GeometryOut>::type, util::is_multi_polygon >::type; using tuple_out_t = boost::tuple<multi_point_t, multi_linestring_t, multi_polygon_t>; template <typename Strategy> static inline void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut& geometry_out, Strategy const& strategy) { detail::random_access_view<Geometry1 const> gc1_view(geometry1); detail::random_access_view<Geometry2 const> gc2_view(geometry2); detail::gc_group_elements(gc1_view, gc2_view, strategy, [&](auto const& inters_group) { tuple_out_t out; merge_group(gc1_view, gc2_view, strategy, inters_group, out); detail::intersection::gc_move_multi_back(geometry_out, boost::get<0>(out)); detail::intersection::gc_move_multi_back(geometry_out, boost::get<1>(out)); detail::intersection::gc_move_multi_back(geometry_out, boost::get<2>(out)); return true; }, [&](auto const& disjoint_group) { copy_disjoint(gc1_view, gc2_view, disjoint_group, geometry_out); }); } private: template <typename GC1View, typename GC2View, typename Strategy, typename Group> static inline void merge_group(GC1View const& gc1_view, GC2View const& gc2_view, Strategy const& strategy, Group const& inters_group, tuple_out_t& out) { for (auto const& id : inters_group) { if (id.source_id == 0) { traits::iter_visit<GC1View>::apply([&](auto const& g1) { merge_one(out, g1, strategy); }, boost::begin(gc1_view) + id.gc_id); } else { traits::iter_visit<GC2View>::apply([&](auto const& g2) { merge_one(out, g2, strategy); }, boost::begin(gc2_view) + id.gc_id); } } /* // L = L \ A { multi_linestring_t l; subtract_greater_topodim(boost::get<1>(out), boost::get<2>(out), l, strategy); boost::get<1>(out) = std::move(l); } // P = P \ A { multi_point_t p; subtract_greater_topodim(boost::get<0>(out), boost::get<2>(out), p, strategy); boost::get<0>(out) = std::move(p); } // P = P \ L { multi_point_t p; subtract_greater_topodim(boost::get<0>(out), boost::get<1>(out), p, strategy); boost::get<0>(out) = std::move(p); } */ } template <typename G, typename Strategy, std::enable_if_t<util::is_pointlike<G>::value, int> = 0> static inline void merge_one(tuple_out_t& out, G const& g, Strategy const& strategy) { multi_point_t p; union_<multi_point_t, G, multi_point_t>::apply(boost::get<0>(out), g, p, strategy); boost::get<0>(out) = std::move(p); } template <typename G, typename Strategy, std::enable_if_t<util::is_linear<G>::value, int> = 0> static inline void merge_one(tuple_out_t& out, G const& g, Strategy const& strategy) { multi_linestring_t l; union_<multi_linestring_t, G, multi_linestring_t>::apply(boost::get<1>(out), g, l, strategy); boost::get<1>(out) = std::move(l); } template <typename G, typename Strategy, std::enable_if_t<util::is_areal<G>::value, int> = 0> static inline void merge_one(tuple_out_t& out, G const& g, Strategy const& strategy) { multi_polygon_t a; union_<multi_polygon_t, G, multi_polygon_t>::apply(boost::get<2>(out), g, a, strategy); boost::get<2>(out) = std::move(a); } template <typename GC1View, typename GC2View, typename Group> static inline void copy_disjoint(GC1View const& gc1_view, GC2View const& gc2_view, Group const& disjoint_group, GeometryOut& geometry_out) { for (auto const& id : disjoint_group) { if (id.source_id == 0) { traits::iter_visit<GC1View>::apply([&](auto const& g1) { copy_one(g1, geometry_out); }, boost::begin(gc1_view) + id.gc_id); } else { traits::iter_visit<GC2View>::apply([&](auto const& g2) { copy_one(g2, geometry_out); }, boost::begin(gc2_view) + id.gc_id); } } } template <typename G, std::enable_if_t<util::is_pointlike<G>::value, int> = 0> static inline void copy_one(G const& g, GeometryOut& geometry_out) { multi_point_t p; geometry::convert(g, p); detail::intersection::gc_move_multi_back(geometry_out, p); } template <typename G, std::enable_if_t<util::is_linear<G>::value, int> = 0> static inline void copy_one(G const& g, GeometryOut& geometry_out) { multi_linestring_t l; geometry::convert(g, l); detail::intersection::gc_move_multi_back(geometry_out, l); } template <typename G, std::enable_if_t<util::is_areal<G>::value, int> = 0> static inline void copy_one(G const& g, GeometryOut& geometry_out) { multi_polygon_t a; geometry::convert(g, a); detail::intersection::gc_move_multi_back(geometry_out, a); } /* template <typename Multi1, typename Multi2, typename Strategy> static inline void subtract_greater_topodim(Multi1 const& multi1, Multi2 const& multi2, Multi1& multi_out, Strategy const& strategy) { using rescale_policy_type = typename geometry::rescale_overlay_policy_type < Multi1, Multi2 >::type; rescale_policy_type robust_policy = geometry::get_rescale_policy<rescale_policy_type>( multi1, multi2, strategy); geometry::dispatch::intersection_insert < Multi1, Multi2, typename boost::range_value<Multi1>::type, overlay_difference, geometry::detail::overlay::do_reverse<geometry::point_order<Multi1>::value>::value, geometry::detail::overlay::do_reverse<geometry::point_order<Multi2>::value, true>::value >::apply(multi1, multi2, robust_policy, range::back_inserter(multi_out), strategy); } */ }; template < typename Geometry1, typename Geometry2, typename GeometryOut, typename Tag1 > struct union_ < Geometry1, Geometry2, GeometryOut, Tag1, geometry_collection_tag, geometry_collection_tag > { template <typename Strategy> static inline void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut& geometry_out, Strategy const& strategy) { using gc_view_t = geometry::detail::geometry_collection_view<Geometry1>; union_ < gc_view_t, Geometry2, GeometryOut >::apply(gc_view_t(geometry1), geometry2, geometry_out, strategy); } }; template < typename Geometry1, typename Geometry2, typename GeometryOut, typename Tag2 > struct union_ < Geometry1, Geometry2, GeometryOut, geometry_collection_tag, Tag2, geometry_collection_tag > { template <typename Strategy> static inline void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut& geometry_out, Strategy const& strategy) { using gc_view_t = geometry::detail::geometry_collection_view<Geometry2>; union_ < Geometry1, gc_view_t, GeometryOut >::apply(geometry1, gc_view_t(geometry2), geometry_out, strategy); } }; template < typename Geometry1, typename Geometry2, typename GeometryOut, typename Tag1, typename Tag2 > struct union_ < Geometry1, Geometry2, GeometryOut, Tag1, Tag2, geometry_collection_tag > { template <typename Strategy> static inline void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut& geometry_out, Strategy const& strategy) { using gc1_view_t = geometry::detail::geometry_collection_view<Geometry1>; using gc2_view_t = geometry::detail::geometry_collection_view<Geometry2>; union_ < gc1_view_t, gc2_view_t, GeometryOut >::apply(gc1_view_t(geometry1), gc2_view_t(geometry2), geometry_out, strategy); } }; } // namespace resolve_collection namespace resolve_strategy { template < typename Strategy, bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategy>::value > struct union_ { template <typename Geometry1, typename Geometry2, typename Collection> static inline void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Collection & output_collection, Strategy const& strategy) { resolve_collection::union_ < Geometry1, Geometry2, Collection >::apply(geometry1, geometry2, output_collection, strategy); } }; template <typename Strategy> struct union_<Strategy, false> { template <typename Geometry1, typename Geometry2, typename Collection> static inline void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Collection & output_collection, Strategy const& strategy) { using strategies::relate::services::strategy_converter; union_ < decltype(strategy_converter<Strategy>::get(strategy)) >::apply(geometry1, geometry2, output_collection, strategy_converter<Strategy>::get(strategy)); } }; template <> struct union_<default_strategy, false> { template <typename Geometry1, typename Geometry2, typename Collection> static inline void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Collection & output_collection, default_strategy) { using strategy_type = typename strategies::relate::services::default_strategy < Geometry1, Geometry2 >::type; union_ < strategy_type >::apply(geometry1, geometry2, output_collection, strategy_type()); } }; } // resolve_strategy namespace resolve_dynamic { template < typename Geometry1, typename Geometry2, typename Tag1 = typename geometry::tag<Geometry1>::type, typename Tag2 = typename geometry::tag<Geometry2>::type > struct union_ { template <typename Collection, typename Strategy> static inline void apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Collection& output_collection, Strategy const& strategy) { concepts::check<Geometry1 const>(); concepts::check<Geometry2 const>(); //concepts::check<typename boost::range_value<Collection>::type>(); geometry::detail::output_geometry_concept_check < typename geometry::detail::output_geometry_value < Collection >::type >::apply(); resolve_strategy::union_ < Strategy >::apply(geometry1, geometry2, output_collection, strategy); } }; template <typename DynamicGeometry1, typename Geometry2, typename Tag2> struct union_<DynamicGeometry1, Geometry2, dynamic_geometry_tag, Tag2> { template <typename Collection, typename Strategy> static inline void apply(DynamicGeometry1 const& geometry1, Geometry2 const& geometry2, Collection& output_collection, Strategy const& strategy) { traits::visit<DynamicGeometry1>::apply([&](auto const& g1) { union_ < util::remove_cref_t<decltype(g1)>, Geometry2 >::apply(g1, geometry2, output_collection, strategy); }, geometry1); } }; template <typename Geometry1, typename DynamicGeometry2, typename Tag1> struct union_<Geometry1, DynamicGeometry2, Tag1, dynamic_geometry_tag> { template <typename Collection, typename Strategy> static inline void apply(Geometry1 const& geometry1, DynamicGeometry2 const& geometry2, Collection& output_collection, Strategy const& strategy) { traits::visit<DynamicGeometry2>::apply([&](auto const& g2) { union_ < Geometry1, util::remove_cref_t<decltype(g2)> >::apply(geometry1, g2, output_collection, strategy); }, geometry2); } }; template <typename DynamicGeometry1, typename DynamicGeometry2> struct union_<DynamicGeometry1, DynamicGeometry2, dynamic_geometry_tag, dynamic_geometry_tag> { template <typename Collection, typename Strategy> static inline void apply(DynamicGeometry1 const& geometry1, DynamicGeometry2 const& geometry2, Collection& output_collection, Strategy const& strategy) { traits::visit<DynamicGeometry1, DynamicGeometry2>::apply([&](auto const& g1, auto const& g2) { union_ < util::remove_cref_t<decltype(g1)>, util::remove_cref_t<decltype(g2)> >::apply(g1, g2, output_collection, strategy); }, geometry1, geometry2); } }; } // namespace resolve_dynamic /*! \brief Combines two geometries which each other \ingroup union \details \details_calc2{union, spatial set theoretic union}. \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \tparam Collection output collection, either a multi-geometry, or a std::vector<Geometry> / std::deque<Geometry> etc \tparam Strategy \tparam_strategy{Union_} \param geometry1 \param_geometry \param geometry2 \param_geometry \param output_collection the output collection \param strategy \param_strategy{union_} \note Called union_ because union is a reserved word. \qbk{distinguish,with strategy} \qbk{[include reference/algorithms/union.qbk]} */ template < typename Geometry1, typename Geometry2, typename Collection, typename Strategy > inline void union_(Geometry1 const& geometry1, Geometry2 const& geometry2, Collection& output_collection, Strategy const& strategy) { resolve_dynamic::union_ < Geometry1, Geometry2 >::apply(geometry1, geometry2, output_collection, strategy); } /*! \brief Combines two geometries which each other \ingroup union \details \details_calc2{union, spatial set theoretic union}. \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \tparam Collection output collection, either a multi-geometry, or a std::vector<Geometry> / std::deque<Geometry> etc \param geometry1 \param_geometry \param geometry2 \param_geometry \param output_collection the output collection \note Called union_ because union is a reserved word. \qbk{[include reference/algorithms/union.qbk]} */ template < typename Geometry1, typename Geometry2, typename Collection > inline void union_(Geometry1 const& geometry1, Geometry2 const& geometry2, Collection& output_collection) { resolve_dynamic::union_ < Geometry1, Geometry2 >::apply(geometry1, geometry2, output_collection, default_strategy()); } }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_UNION_HPP